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Highlights 

• Protein complexes of the SMC family organize chromosomes by extruding large DNA loops. 
• SMC-mediated loop extrusion presumably requires DNA anchor and motor elements. 
• Changes in coiled-coil conformations might appose distant DNA binding sites during DNA 

translocation. 

  

Abstract 

Structural Maintenance of Chromosomes (SMC) protein complexes play key roles in the three-dimensional 
organization of genomes in all kingdoms of life. Recent insights from chromosome contact mapping experiments 
and single-molecule imaging assays suggest that these complexes achieve distinct cellular functions by extruding 
large loops of DNA while they move along the chromatin fiber. In this short review, we summarize recent insights 
into the molecular architecture of these unconventional DNA motor complexes, their interaction with their DNA 
substrates, and the remarkable dynamic changes they can undergo during their ATPase reaction cycle. 

 

Introduction 

A multitude of genomic functions – ranging from the 
control of gene expression and the repair of DNA 
damage to the compaction of individual chromatin 
fibers into mitotic chromosomes – require a series of 
complex rearrangements in the spatial organization of 
the chromatin fiber. These structural changes in 
chromosome architecture are governed by ubiquitous 
multi-subunit protein complexes of the SMC family, 
which can be subdivided into three major categories 

both in prokaryotes (MukBEF, MksBEF, SMC–
ScpAB) and eukaryotes (cohesin, condensin and 
Smc5/6) [1]. The eukaryotic SMC complexes fulfill 
specific functions during different stages of the cell 
cycle: cohesin maintains chromatin domains during 
interphase and holds together sister chromatids once 
they emerge from the DNA replication fork [2]; 
condensin organizes mitotic and meiotic chromosomes 
into the iconic cylindrical structures described decades 
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ago [3]; Smc5/6 controls DNA superhelicity and plays 
a role in DNA damage repair [4].  

Despite their discrete roles, SMC complexes share 
a common three-dimensional architecture. At their core 
is a pair of ~50-nm-long intra-molecular coiled-coil 
SMC subunits that dimerize via a globular ‘hinge’ 
domain at one end of the coils. The amino and carboxy 
termini brought together at the other ends of the coils 
fold into ATP-Binding-Cassette (ABC) ATPase ‘head’ 
domains (Figure 1). The two ATPase heads of an SMC 
dimer are able to engage with each other upon binding 
a pair of ATP molecules between the Walker A/B 
motifs of one head and the conserved ABC signature 
motifs of the opposite head, whereas nucleotide 
hydrolysis and release are thought to again drive the 
head apart. The SMC heads are furthermore connected 

by a subunit of the kleisin protein family, which binds 
via a helical domain located at its amino terminus to 
the coiled-coil ‘neck’ region immediately adjacent to 
one head and via a winged-helix domain located at its 
carboxy terminus to the opposite ‘cap’ surface of the 
opposite head. The kleisin recruits additional subunits 
to the complex that are either composed of tandem 
winged-helix domains (in MukBEF, MksBEF, SMC–
ScpAB and Smc5/6) or of helical HEAT (Huntingtin, 
EF3, PP2A, TOR1) repeats (in cohesin and condensin) 
[5]. 

Although the structures of most of their subunits 
have now been resolved to near-atomic detail, it still 
remains mysterious how SMC protein complexes 
engage with their chromatin substrates and carry out 
their functions. In this brief review, we focus our 
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Figure 1. Architecture of SMC protein complexes. Cartoon representations of available subunit structures of prokaryotic Smc–ScpAB 
and MukBEF complexes and eukaryotic cohesin and condensin complexes. Available structural models are indicated for the Pyrocuccus 
furiosus Smc dimer (light/dark grey) in the rod-shaped, nucleotide-free state [42] and Geobacillus stearothermophilus ScpB 
(orange/yellow; pdb: 3W6J) [28]; the Escherichia coli MukB dimer (light/dark grey) hinge (pdb: 3IBP) [53] and coiled-coil elbow (pdb: 
6H2X) [44] and Haemophilus ducreyi head domains (pdb: 3EUK) in the nucleotide-bound state and E. coli MukE (orange/yellow; pdb: 
3EUH) [54]; the cohesin Smc1–Smc3 dimer (red/blue) Mus musculus hinge (pdb: 2WD5) [32] and Saccharomyces cerevisiae/Chaetomium 
thermophilum heads (pdb: 6QPW) in the nucleotide-bound state [31] and C. thermophilum Scc2 (yellow; pdb: 5T8V) [55], Lachancea 
thermotolerans Pds5 (yellow; pdb: 5F0O) [56] and Zygosaccharomyces rouxii Scc3 (orange; pdb: 4UVK) [57]; the condensin Smc2–Smc4 
dimer (blue/red) S. cerevisiae hinge (pdb: 4RSI) [43] and C. thermophilum heads (pdb: 6QJ1 and 6QJ2) in the nucleotide-free state and 
Ycs4 (yellow; pdb: 6QJ3) [49] and S. cerevisiae Ycg1 (orange; pdb: 5OQQ) [20]. The cartoons indicate different coiled-coil conformations 
that are presumably accessible by all complexes. Note that MukBEF complexes can form dimers of dimers via the amino terminus of the 
MukF kleisin subunit, indicated by the presence of a second MukF subunit. 
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discussion on the current understanding of the physical 
interactions between SMC complexes and DNA and 
speculate how these interactions might mediate diverse 
biological functions. 

Chromosome organization by DNA loop extrusion 

A unifying mechanism for the seemingly different 
functions of SMC protein complexes might be their 
ability to generate large DNA loops. The idea that SMC 
complexes act as a pair of bidirectional DNA motors 
that move into opposite directions on the same DNA 
and thereby extrude a DNA loop elegantly explains 
several features of chromosome contact frequency 
maps that were obtained from high-throughput 
sequencing techniques in vertebrate cells. These 
features include the co-localization of cohesin and the 
transcriptional repressor CTCF bound to DNA 
sequences that are oriented in a convergent (i.e. head-
to-head) orientation with respect to one another at the 
bases of DNA loops during interphase [6,7] and the 
folding of mitotic chromosomes by condensin into 
arrays of loops with an average size of ~80 kilobase 
pairs [8,9]. The alignment of the left and right arms of 

circular bacterial chromosomes can similarly be 
rationalized by Smc–ScpAB complexes that zip up 
both chromosome arms into loops as they translocate 
along them [10,11]. 

In single-molecule imaging experiments, purified 
yeast condensin complexes [12] or human cohesin 
complexes [13,14] were indeed able to track along tens 
of kilobase pairs and progressively extrude DNA into 
loops. Unlike cohesin, condensin reeled in the DNA 
double helix in a strictly unidirectional manner, which 
suggests that condensin must possess two principally 
distinct DNA-binding elements: an ‘anchor’ element 
that stably holds on to the DNA segment the complex 
initially bound to and a ‘motor’ element that 
translocates along a second segment of the same DNA. 
Such an asymmetric motor could then be converted 
into a symmetric, bidirectional motor by the 
dimerization of two complexes in a back-to-back 
orientation, as has been suggested for human cohesin 
[14] or the Escherichia coli MukBEF complex [15]. 
Computational simulations likewise suggest that 
conversion of condensin into a bidirectional motor 
might be necessary to achieve efficient compaction of 

mitotic chromosomes [16]. 
Asymmetric motors that can 
traverse each other, as recently 
observed for condensin [17], 
provide an alternative solution 
for closing gaps between DNA 
loops that would otherwise have 
been left uncompacted. Yet 
another possibility foresees that 
asymmetric motors might be 
able to switch directionality 
without releasing the DNA loop 
they had created to achieve 
bidirectional loop extrusion. To 
gain insights into the DNA loop 
extrusion mechanism, 
understanding how SMC 
complexes contact DNA and 
how conformational changes 
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Figure 2. DNA anchor domains of eukaryotic SMC complexes. (A) Cartoon 
representations of the budding yeast cohesin Ycg1–Brn1 subcomplex bound to 18 base pairs 
(bp) double-stranded DNA (dsDNA) (pdb: 5OQP) [20].  A dotted line indicates the ‘safety 
belt’ peptide loop. (B) Cartoon model of the human cohesin SA2–SCC1 subcomplex (pdb: 
6QNY) [22] bound to 19 bp dsDNA (positioned based on the structure of the yeast Scc3–
Scc1 subcomplex, pdb: 6H8Q) [21] and the zinc-fingers 2–7 of human CTCF bound to 23 bp 
dsDNA (pdb 5T0U) [58]. A dotted line indicates a linker to a peptide motif that binds to the 
‘conserved essential surface’ region on the backside of SA2. 
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turn static complexes into DNA motors will hence be 
crucial. 

DNA anchor elements in SMC complexes 

Whereas the identity of the DNA motor element(s) in 
condensin and other SMC complexes remains 
unknown (see below), it is likely that a positively 
charged groove, which is formed when the Ycg1/CAP-
G HEAT-repeat subunit of condensin engages the 
Brn1/CAP-H kleisin subunit (Figure 2A), serves as an 
anchor element [18-20]. Co-crystal structures revealed 
that DNA is bound in the groove exclusively via 
backbone contacts with residues from both the kleisin 
and HEAT-repeat subunits, and is furthermore locked 
into place by its entrapment within a ‘safety belt’ 
peptide loop of the kleisin [20]. Loosening of this 
safety belt by mutation causes condensin to slip while 
it extrudes DNA loops, which is consistent with the 
proposal that this part of the complex functions as a 
DNA anchor [12]. 

Although the homologous Scc3/SA2 HEAT-repeat 
subunit of cohesin binds DNA at a similar position of 
its U-shaped architecture [21], amino acid sequence 
analysis suggests that the cohesin Scc1/RAD21 kleisin 
lacks a safety belt loop [20]. It is tempting to speculate 

that the absence of a safety belt might allow cohesin to 
frequently switch its directionality to produce 
symmetric DNA loops over a period of time. Cohesin 
nevertheless becomes stably anchored to DNA when it 
encounters the transcriptional repressor CTCF, which 
uses a hydrophobic peptide motif close to its amino 
terminus to bind to a conserved patch on the Scc3/SA2 
HEAT-repeat subunit [22] (Figure 2B). The proposal 
that this peptide motif might only be accessible when 
cohesin approaches from the 3’ end of the CTCF-
binding sequence provides a simple explanation for the 
accumulation of cohesin specifically at CTCF 
sequences that are in a convergent orientation [23,24]. 
In this case, the CTCF–SA2 complex would function 
as a DNA anchor element analogous to the Ycg1/CAP-
G anchor found in condensin, yet one that targets 
cohesin to specific positions in the genome. Whether 
SMC–kleisin complexes that contain tandem winged-
helix subunits in place of HEAT-repeat subunits, such 
as Smc–ScpAB or Smc5/6, possess a comparable DNA 
anchor element remains unknown. 

Potential DNA motor elements in SMC complexes 

It seems reasonable to assume that any DNA motor 
element must require the presence of at least two 
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Figure 3. Potential DNA binding surfaces on 
the SMC heads. Surface charge potential 
representations of (A) Rad50 homodimer heads 
bound to 31 bp dsDNA and the Mre11 dimer 
(yellow/orange) (pdb: 6S85) [25], (B) 
Geobacillus stearothermophilus SMC head 
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thermophilum Smc1–Smc3 head heterodimer 
(pdb: 6QPW) [31] viewed from in-between the 
coiled coils. Surface charge scale ranges from –
5 kT/e (red) to +5 kT/e (blue). Circles indicate 
the positions of the coiled-coil stems. 
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distinct DNA binding sites that alternate in their 
contact with the DNA double helix in a manner that is 
controlled by cycles of ATP binding and hydrolysis by 
the SMC heads. Where might such DNA binding sites 
be located? 

The SMC ATPase heads themselves are excellent 
candidates for creating a transient DNA binding site. 
Crystal and cryo-electron microscopy (cryo-EM) 
structures of the SMC-related Rad50–Mre11 DNA 
damage repair complex reveal binding of a DNA 
double helix along a positively charged cleft that forms 
between the coiled coils of the engaged Rad50 ATPase 
heads, with the Mre11 endonuclease closing off one 
side of the cleft to lock DNA in place [25-27] (Figure 
3A). A similar cleft can be detected in the crystal 
structure of dimerized prokaryotic SMC heads [28,29] 
(Figure 3B) and mutation of positively charged side 
chains of surrounding residues reduces the affinity of 
the ATP-engaged head dimer for DNA [30]. Whether 
the same cleft accommodates DNA in eukaryotic SMC 
complexes is less clear, since crystal structures of ATP-
engaged head heterodimers are not yet available and a 
recent Smc1–Smc3 head cryo-EM structure did not 
resolve the positions of several central residues of the 
cleft [31]. In either case, the formation of a composite 
positively charged cleft upon nucleotide-dependent 
ATPase head engagement would provide a simple 
control mechanism for the creation and dissolution of 
a transient DNA binding site during the SMC catalytic 
cycle. 

A second candidate for creating a DNA-binding 
interface is the SMC hinge dimerization domain. 
Crystal structures of hinge dimers from different 
origins revealed that the central channel of the 
doughnut-shaped domain is consistently positively 
charged [32,33]. Mutation of basic residues within this 
channel prevent DNA entrapment by cohesin 
complexes [34]. Moreover, mutation of basic residues 
at the outer surface reduces DNA binding by 
prokaryotic SMCs in vitro [35,36]. These results 
suggest that the hinge domain must make an important 
contribution to the function of SMC complexes, 

presumably through its ability to contact DNA. 
However, the majority of isolated hinge domains 
assayed for DNA binding in vitro displayed 
considerably greater affinities for single-stranded than 
for double-stranded DNA [33,36-38]. Even more 
surprising, SMC complexes were still able to support 
rapid cell divisions in Bacillus subtilis even when their 
hinge dimerization domains had been replaced by the 
structurally distinct zinc-hook dimerization domain of 
Rad50 [39]. It therefore remains questionable whether 
SMC hinge domain could be a crucial part of any DNA 
motor element. 

Conformational changes that could drive DNA loop 
extrusion 

Comparison of ATP hydrolysis rates measured in 
ensemble assays and DNA-loop extrusion speeds 
measured in single-molecule experiments suggests that 
cohesin and condensin might be able to take steps that 
are in the range of the entire length of these complexes 
– 50 nm or more –  in a single reaction cycle [12,13]. 
If this comparison were accurate, SMC complexes 
must be able to undergo extensive conformational 
changes that allow them to move in such large steps 
along DNA and, more importantly, entire chromatin 
fibers, by a mechanism that is remarkably different 
from those used by well-characterized DNA motor 
proteins, like DNA helicases or translocases [40]. 

It seems plausible that any large-scale movements 
originate in the properties of the SMC coiled coils. 
When imaged in solution by real-time atomic force 
microscopy, the coiled coils of condensin are 
frequently separated and display a large degree of 
elasticity. This flexibility allows them to bend into a 
‘butterfly’-like shape that brings together head and 
hinge regions [41]. In contrast, data from electron and 
dry atomic force microscopy, protein cross-linking 
experiments and crystal structures imply that two SMC 
coiled coils frequently align into stiff rods along almost 
their entire lengths [42,43] and that such rods can 
sharply fold back at an ‘elbow’ region to bring head 
and hinge domains into proximity [44,45]. The rod-
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shaped coiled-coil conformation might hence be less 
rigid than initially anticipated, which is also consistent 
with recent molecular dynamics simulations [46]. 

Bending of the coiled coils, irrespective of whether 
they are split apart or aligned into a rod, might provide 
a mechanism to bring together two otherwise distant 
DNA-binding sites at the head and hinge domains and 
thereby bend the segment of DNA between them into a 
loop [12,40,47,48] (Figures 4A and B).It is conceivable 
that such a ‘scrunching’-type motion might be powered 
by the SMC ATPase heads to drive the DNA motor 
activity. Comparison of structures of nucleotide-bound 
and nucleotide-free condensin and cohesin SMC heads 
indeed suggests that nucleotide binding to one of the 
two head domains results in a reorientation of the 
attached coiled coil and disengagement of the kleisin 
amino terminus from the coiled-coil neck region 
[31,49]. Whether this structural transition directly 
affects DNA binding, possibly by creating additional 
DNA binding interfaces at the coiled coil, like the one 
observed in a recent Rad50 crystal structure [50], is 
currently unclear. Scrunching-type models fall, 
however, short in explaining why bending of the coiled 
coils could never be observed in electron micrographs 
of Bacillus subtilis SMC complexes [43], why the 
hinge domain can be replaced, or why the coiled coils 

can be shortened or extended by one superhelical 
period without interfering with SMC function in this 
species [39]. 

An alternative model stems from the finding that, in 
the reconstituted structure of the rod-shaped B. subtilis 
SMC dimer, the ATPase head domains tilt away from 
each other in an orientation that prevents nucleotide 
binding [42]. Protein cross-linking data support a 
similar orientation of the Smc1 and Smc3 heads of 
cohesin [51]. Bringing the heads into a position that 
enables them to sandwich ATP between their Walker 
A/B and ABC signature motifs requires a major re-
orientation in the heads, which is thought to drive the 
opening of the rod-shaped coils into an open ring-
shaped conformation [43]. If a DNA segment could 
enter the open ring structure in the ATP-engaged 
conformation and subsequent head disengagement 
would cause the coiled coils to zip up from the hinge, 
then this movement could drive any DNA loop 
entrapped between the coiled coils towards the heads 
(Figure 4C) and into a separate compartment formed 
by the connection of the latter with the kleisin subunit 
[52]. Such a ‘segment capture’ model would not 
require a strong DNA binding site at the SMC hinge, 
but bears the challenge that DNA would somehow need 
to be bent and fed into the coiled-coil interspace. 
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Figure 4. Possible DNA motor 
movements of SMC complexes. (A) 
Extended ring-shaped SMCs might bind 
to DNA via their head and hinge domains 
and DNA loops might be formed when 
the coiled-coils bend. (B) Rod-shaped 
SMCs might bind DNA as in (A) and 
then fold at their elbow region to create 
and extend a DNA loop. (C) Ring-
shaped SMC complexes might capture a 
DNA loop within their lumen and then 
zip up their coiled coils from hinge to 
heads to move the loop into a new 
compartment created by the kleisin 
subunit (not depicted). In all models, the 
bases of the DNA loop would need to be 
held in place when the reaction cycle 
resets. 
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Independent of whether the DNA translocation step is 
based on a scrunching-type movement or follows the 
segment capture model, future experiments will need 
to address whether, and if so how, re-arrangements in 
the coiled coils are linked to DNA movement and loop 
extrusion. 

Conclusions 

SMC protein complexes have emerged as the universal 
key players in the functional organization of genomes. 
Their common working principle presumably depends 
on the extrusion of large chromatin loops by their 
processive movement along the DNA double helix, but 
the molecular basis of their DNA motor activity has 
remained largely mysterious. Uncovering how these 
exceptional machines move DNA and entire chromatin 
fibers will require the unambiguous identification of 
the parts of the complexes that interact with DNA and 
of the conformational changes that are essential to 

generate the large steps inferred from biophysical 
measurements. Structural insights into the architecture 
of SMC holo complexes, by themselves and when 
bound to DNA and/or chromatin, as well as new 
techniques that can capture the dynamic changes in 
these structures, will undoubtedly provide unique new 
insights into one of the last few unsolved puzzles of 
chromosome biology.   
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