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The advent of genome-wide RNA interference 
(RNAi)–based screens puts us in the position to 
identify genes for all functions human cells carry out. 
However, for many functions, assay complexity and 
cost make genome-scale knockdown experiments 
impossible. Methods to predict genes required for cell 
functions are therefore needed to focus RNAi screens 
from the whole genome on the most likely candidates. 
Although different bioinformatics tools for gene 
function prediction exist, they lack experimental 
validation and are therefore rarely used by 
experimentalists. To address this, we developed an 
effective computational gene selection strategy that 
represents public data about genes as graphs and then 
analyzes these graphs using kernels on graph nodes to 
predict functional relationships. To demonstrate its 
performance, we predicted human genes required for 
a poorly understood cellular function—mitotic 
chromosome condensation—and experimentally 
validated the top 100 candidates with a focused RNAi 

screen by automated microscopy. Quantitative 
analysis of the images demonstrated that the 
candidates were indeed strongly enriched in 
condensation genes, including the discovery of several 
new factors. By combining bioinformatics prediction 
with experimental validation, our study shows that 
kernels on graph nodes are powerful tools to integrate 
public biological data and predict genes involved in 
cellular functions of interest. 

Introduction 

Gene knockdowns are typically used to induce cellular 
phenotypes from which gene functions can be inferred. 
This reverse-genetics approach to cell biology has long 
been limited to genetically tractable model organisms 
such as the budding yeast Saccharomyces cerevisiae. 
With the advent of RNA interference (RNAi), reverse 
genetics has become routine also in human cells, and 
experimentally assigning functions to each human gene is 
in principle possible. However, many cellular functions 



can only be studied through complex assays or require 
high-content microscopy readouts, and both assay 
complexity and cost associated with large-scale RNAi 
screens keep genome-wide studies beyond the reach of 
most laboratories. As a consequence, most RNAi screens 
are conducted with a small set of often poorly selected 
candidate genes. For example, the set of all protein 
kinases is often selected for screening on the basis of the 
lower cost of the corresponding small interfering RNA 
(siRNA) libraries. This situation leads to a small number 
of genes being functionally overannotated, such as 
oncogenes and protein kinases, whereas most of the 
human genome contains genes whose functions remain to 
be characterized. In a few cases, candidate genes are 
identified after extensive literature and database searches 
by association with genes already implicated in the 
process under consideration. Given the multiplicity of 
data sources for gene similarity and the fact that links 
between genes can be indirect, candidate gene selection is 

a difficult task. An efficient data-mining method to select 
genes relevant to a biological process of interest would 
allow investigators to focus experimental screens on the 
most likely candidates. In addition, such a tool would 
allow the user to fill gaps in hit lists of RNAi screens, 
which in human cells typically do not reach saturation. 

Many methods for predicting gene function have been 
developed (see Wang and Marcotte, 2010), and some 
predictions have been experimentally tested in different 
systems (Lee et al. 2008; Qi et al. 2008; Hu et al. 2009; 
Rojas et al. 2012). For human genes, methods have 
mostly focused on finding association with diseases 
(Tranchevent et al., 2011) rather than basic biological 
functions. Because different studies use different 
approaches, it is difficult to compare performance of the 
prediction in successfully guiding experiments. However, 
among the different methods, those that represent genes 
as nodes in a graph linked by their functional associations 
and then exploit the graph structure to compare genes 

perform well in retrieving known 
functional annotations in mouse (Peña-
Castillo et al., 2008). These methods 
can be seen as propagating the 
characteristics of functionally annotated 
example genes to unannotated genes 
using a similarity measure between 
genes that takes into account the graph 
structure. One such state-of the art 
algorithm is GeneMANIA (Mostafavi 
et al., 2008; Mostafavi and Morris, 

Figure 1 | Overview of the data integration, 
gene selection, and experimental testing 
procedure. (A) Each data source is viewed as an 
undirected weighted graph whose adjacency 
matrix is used to derive a kernel matrix 
representing similarities between genes. Data 
integration is performed by averaging kernels 
from different data sources. Genes are ranked by 
the sum of their similarities to a list of query 
genes representing a biological process of 
interest. (B) Genes from the top of the ranked list 
are targeted by RNA interference, and the 
resulting phenotypes are captured by automated 
microscopy of live cells, followed by 
computational image analysis. 



2010). In this algorithm, different data sources are 
combined into one graph, and then a measure of similarity 
between genes as nodes of the graph is computed, taking 
into account the global structure of the graph. 

 
Among the different ways of measuring similarity 
between genes, kernel functions are particularly suited for 
data mining because they can be applied to nonvectorial 
data such as sequences or nodes of interaction graphs. 
Furthermore, kernels allow integration of many data 
sources because linear combinations of kernel matrices 
are still interpretable as similarity matrices (Shawe-
Taylor and Christianini, 2004). Because most biological 
data can be viewed as weighted undirected graphs with 
genes as nodes and “interactions” or “functional links” as 
edges, kernels on graph nodes represent a natural measure 
of similarity between genes. 

Previous applications of the kernel concept have 
generally focused on kernels with free parameters (e.g., 
radial basis kernels, polynomial kernels, diffusion 
kernels) and on learning an ad hoc combination of kernels 
for data integration (Lanckriet et al., 2004; De Bie et al., 
2007; Roth and Fischer, 2007; Yu et al., 2010). These 
approaches require tuning of free parameters using an 
extensive training data set often requiring both positive 
and negative examples. For practical applications to guide 
experimental work, this has two drawbacks. First, 
parameter tuning may have to be done for each new 
query, since a training set appropriate for one biological 
function may not be adequate for another. Second, for 
new or poorly understood biological functions, the 
training set is typically limited to very few genes, and 
negative examples are often not known. 

The goal of this study is therefore to demonstrate the 
performance of a parameter-free gene function prediction 
method using kernels on graph nodes to select candidate 
genes for a focused RNAi screen. However, which kernel 
would provide the most useful representation for a 
particular data set was an open question. To this end, we 
first compared how well different kernels on graph nodes 
derived from various public gene characterization data 
sources retrieve known functional relationships between 
genes. After identifying the best kernel combination, we 

then used kernel similarity to genes known to be involved 
in a biological process of interest to predict new genes 
with the same function (Figure 1A). To validate 
experimentally the quality of the kernel prediction, we 
targeted the top 100 ranked genes in a microscopy-based 
RNAi screen (Figure 1B). 

As biological process, we chose mitotic chromosome 
condensation as an example of an essential yet poorly 
understood step of cell division. Condensation transforms 
interphase chromatin into rod-shaped compact mitotic 
chromosomes that allow faithful genome partitioning. 
The condensation process starts during prophase (before 
nuclear envelope breakdown in the case of open mitosis), 
and the only genes known to be involved belong to the 
condensin protein complex, identified almost 20 years 
ago (Hirano and Mitchison, 1994; Strunnikov et al., 
1995), with two isoforms, condensin I and II in 
metazoans. Condensin I is formed by SMC2, SMC4, 
NCAPD2, NCAPG, and NCAPH and is present in all 
eukaryotes, whereas condensin II is formed by SMC2, 
SMC4, NCAPD3, NCAPG2, and NCAPH2 and is 
restricted to metazoans (Ono et al., 2003; Hirota et al., 
2004). Although depletion of condensin I and II reduces 
chromosome condensation in prophase, chromosomes 
appear normally condensed at later stages of mitosis 
(Hudson et al., 2003; Ono et al., 2003; Hirota et al., 
2004), and a lack of condensin most prominently affects 
chromosome segregation (Gerlich et al., 2006; Renshaw 
et al., 2010) rather than condensation. Which factors 
promote chromosome condensation in the first place 
therefore remains an open question, and new proteins that 
are required for mitotic chromosome condensation in 
human cells still need to be identified. 

Results 

Computational validation of the gene function 
prediction method 

We represented biological information on gene function 
from various sources as undirected weighted graphs and 
computed different kernels as similarity measures 
between genes. We mined six sources of data: protein 
interactions (PI), homology-inferred protein interactions 
(HIPPO), Gene Ontology (GO) biological process (BP), 



text mining (TM), a gene expression network from 
aggregation of many gene expression data sets (MEMP), 
and ab initio–predicted protein interactions from co-
occurring protein domain architectures (Co-Occurrence 
Domain Analysis [CODA]), to which we applied three 
different kernel functions—the commute time, random 
forest, and von Neumann diffusion kernels (see Materials 
and Methods). To ensure that the kernels captured 
relevant relationships between genes, we first examined 
which kernel on which data source gave the best 
performance in retrieving known functional relationships 
between genes as defined in the Panther pathways 
database (Mi et al., 2005). Using a few pathway genes as 
query, we ranked each gene in the genome by the sum of 
its similarities to the query genes and then counted how 
many genes from the whole pathway were found above 
different thresholds (see Materials and Methods). We 
found that the commute time (CT) kernel gave the best 
overall performance for all data sources (Figure 2A and 
Supplemental Figure S1) and that combining the best 
kernels for each data source for data integration further 
improved function retrieval (Table 1 and Supplemental 

Figure S2). This approach only slightly outperformed the 
GeneMANIA method (Table 1), which integrates data 
sources first by computing an average graph before 
applying a single kernel function (see Supplemental 
Information). Although these tests showed that most 
kernels in principle represent gene functional similarity 
well, they are likely to give an overoptimistic view of the 
prediction performance due to the interdependence 
between the Panther pathways and source databases. For 
example, defining pathway genes in Panther relies on 
functional information from the same literature used to 
establish protein interactions and GO databases. To avoid 
circularity in biological databases, we tested whether we 
could predict hits from human genome-wide RNAi 
screens published after the establishment of the source 
data. As example sources of phenotypic functional gene 
relations, we used the outcome of the MitoCheck 
genome-wide RNAi screen (Neumann et al., 2010), 
which scored several cell division–related phenotypes 
and increased motility, as well as a screen on DNA 
double-strand-break repair (Słabicki et al., 2010) and a 
screen for NF-κB activation (Gewurz et al., 2012). 
Suitable query genes representing prior knowledge were 
chosen from genes already annotated with GO terms of 
the biological process targeted by each screen 
(Supplemental Table S1) and were used to query the 
similarity matrix formed by our best kernel combination 

Figure 2 | Summary of bioinformatics tests of the gene selection 
method. (A) Kernels on graph nodes differ in their global 
performance at information retrieval: heatmap view of areas under 
the curve (AUC) of true positives vs. false positives for all kernels 
and data sources tested. Colors go from blue for low values (<0.2) to 
red for high values (>0.8). Data sources are in columns: BP, semantic 
similarities across GO biological processes; CODA, predicted 
interactions based on domain co-occurrence; HIPPO, protein 
interactions from other species mapped to human; MEMP, gene 
coexpression network; PI, protein interactions in human; TM, iHOP-
generated interactions. Kernels are in rows: CT, commute time; RF, 
random forest; VN, Von Neumann diffusion; A, adjacency matrix; 
DB, degree-based similarity. (B) Screening of selected genes 
outperforms genome-wide screening. For each screen, the hit rate is 
expressed as percentage of tested genes having the desired 
phenotype. For virtual screens, the tested genes are the top 100 
predicted genes, and the numbers represent the fraction of these that 
were found as hits in the corresponding genome-wide screen. 



or by the GeneMANIA approach. To assess the 
performance of the gene function prediction, we 
performed a virtual screen by counting the fraction of hits 
from the experimental genome-wide screen found among 
the top 100 predicted genes and compared the resulting 
hit rate to that of the genome-wide screen (Figure 2B). 
Whereas the genome-wide screens have an average hit 
rate of 3%, the virtual screens produced a hit rate average 
of 13% with our kernel combination and 11% with the 
GeneMANIA approach. In all cases, the hit rate of the 
virtual screen was significantly higher than the hit rate of 
the corresponding genome-wide screen, demonstrating 
that the predicted genes are strongly enriched in genes 
involved in the biological function of interest. 

Table 1 | Performance of different data integration schemes. 

Data integration scheme AUC up to 25% false-
positive rate 

KRF(PI) + KCT(HIPPO) + KCT(BP) + 
KCT(TM) 

0.88 

KCT(averaged graph PI + HIPPO + BP 
+ TM) 

0.84 

GeneMANIA (= KRF(averaged graph PI 
+ HIPPO + BP + TM)) 

0.86 

KCT(combined binary graphs PI + 
HIPPO + BP + TM) 

0.70 

 

These results showed that the approaches used have the 
ability to predict genes involved in a specific biological 
function. We were therefore confident that graph-derived 
kernel-based gene ranking can be used to predict 
candidate genes involved in a particular biological 
process. Whereas the kernel combination approach and 
the GeneMANIA approach gave roughly similar 
performances, the kernel combination outperformed 
GeneMANIA by a small margin, as illustrated by the fact 
that the median number of hits retrieved by the 
GeneMANIA approach that were missed by our approach 
was one whereas the median number of hits retrieved by 
our approach but missed by GeneMANIA was four. We 
therefore chose to use the kernel combination to select 
candidate genes involved in mitotic chromosome 

condensation and assessed the quality of this selection by 
carrying out a new RNAi screen. 

Prediction of human chromosome condensation genes 
and construction of siRNA library 

The similarity matrix formed by the best kernel 
combination was queried with genes known to function in 
chromosome condensation, that is, the eight genes 
encoding human condensin subunits plus KIF22, which 
was previously shown to contribute to chromosome arm 
compaction in anaphase (Mora-Bermudez et al., 2007; 
Ohsugi et al., 2008). As a result of this query, each gene 
in the genome was assigned a score that is the sum of its 
similarity values to the query genes and ranked by 
decreasing value of this score. Plotting score against rank 
number is an additional way to help the experimentalist 
assess up to which rank there is high predictive power for 
a functional relationship to the query genes. In the case of 
chromosome condensation predictions, the score curve 
dropped to low values and flattened after the top 100 
genes (see Supplemental Figure S3), which suggested 
that screening the top 100 genes as candidates for 
chromosome condensation should reveal most true 
positives. We therefore decided to build a custom siRNA 
library for the top 100 genes (two siRNAs per gene; for 
the full list of the 200 siRNAs, see Supplemental Table 
S2). Although used as a query, KIF22 had rank 4849, 
suggesting that there is no functional link between KIF22 
and the condensin genes. To nevertheless represent all 
query genes in the library, we added KIF22 to the list of 
candidate genes. 

Validation of chromosome condensation gene 
predictions by microscopy-based RNAi screening 

Mitotic chromosome condensation defects have often 
been inferred indirectly from the detection of 
chromosome segregation defects such as the presence of 
chromatin bridges because this is the dominant phenotype 
observed in the absence of condensins. However, 
chromosome segregation defects are not an ideal reporter 
for chromosome condensation defects because 
segregation defects can be independent of condensation, 
and condensation defects may not always result in 
segregation problems (Cuylen and Haering, 2011; 



Petrova et al., 2013). Therefore we assayed chromosome 
condensation more directly by imaging human cells at 
sufficiently high spatial and temporal resolution to 
analyze the changes in chromatin texture during 
condensation in prophase. HeLa cells stably expressing 
H2B-mCherry to mark chromatin and LMNA–enhanced 
green fluorescent protein (eGFP) to mark the nuclear 
lamina and report on nuclear envelope breakdown 
(NEBD) as an independent temporal reference for the 
prophase/prometaphase transition (Mall et al., 2012) 
were transfected with 200 siRNAs targeting the 100 
selected candidate genes individually, using solid-phase 
transfection in siRNA-coated, microscopy-compatible 
96-well plates (Erfle et al., 2008; see Materials and 
Methods). At 24 h after plating, cells were imaged at 20× 

magnification for 44 h with a time lapse of 8.5 min. Four 
independent experimental replicates were acquired for 
each siRNA, resulting in a set of 800 time-lapse movies. 

To score chromosome condensation phenotypes in this 
large amount (2 TB, >0.5 million images) of time-
resolved image data, we used the CellCognition software 
(Held et al., 2010) to automatically classify the different 
cell cycle stages in the recorded movies and track single 
cells through the interphase-to-mitosis transition (see 
Materials and Methods for details). Because our prophase 
class definition is based on the morphological changes of 
chromatin taking place before NEBD, a lack of mitotic 
chromosome condensation in prophase would be detected 
as a shorter prophase. Conversely, premature or delayed 

Figure 3 | Screen for chromosome 
condensation genes. (A) Example of 
nuclei classification outputs for a 
negative control cell (top, control), a cell 
from NCAPD3 knockdown (middle, 
NCAPD3), and MCPH1 knockdown 
(bottom, MCPH1). Scale bar, 10 µm. 
Time is in minutes relative to NEBD. The 
colored line in the middle of each row 
represents the class assigned to each 
nucleus of the top showing H2B-
mCherry. Bottom, corresponding status 
of the nuclear envelope in the LMNA-
eGFP channel. (B) Short-prophase score 
distribution for all tested genes. The gene 
score is the median of the difference with 
control in the fraction of mitoses with 
short prophase over all replicates 
involving the gene. A positive value 
indicates more mitoses with short 
prophase than in control. Genes identified 
as short-prophase hits are shown in 
magenta. (C) Long-prophase score 
distribution for all tested genes. The gene 
score is the median of the difference with 
control in the fraction of mitoses with 
long prophase over all replicates 
involving the gene. A positive value 
indicates more mitoses with long 
prophase than in control. Genes identified 
as long prophase hits are shown in 
magenta. 



condensation would be detected as a longer prophase. In 
cells treated with nontargeting siRNAs, the duration of 
prophase varied with a median of 17 min, in agreement 
with previous measurements (Hirota et al., 2004; 
Landsverk et al., 2010). Examples of the short- and long-
prophase phenotypes are shown in Figure 3A. To get an 
overview of the screen, we derived for each gene a short-
prophase score (Figure 3B) and a long-prophase score 
(Figure 3C) (for details see Materials and Methods) 
whose distributions show that knockdowns of more genes 
result in a shortening rather than a lengthening of 
prophase. For the purpose of validating our gene function 
prediction algorithm and taking genes forward to further 
validation analysis (see later discussion), a gene was 
considered to score if at least two replicates of at least one 
siRNA resulted in a significant change to prophase 
duration (see Materials and Methods). 

As expected, siRNA silencing of all condensin II subunits 
(SMC2, SMC4, NCAPD3, NCAPG2, and NCAPH2) led to 
a marked shortening of prophase, indicative of reduced 
condensation and validating our microscopy-based assay 
and computational scoring. In addition, knockdown of 17 
other genes caused significantly shorter prophases 
(Figure 3B and Table 2). In contrast, knockdown of 18 
genes caused significant delays in prophase (Figure 3C 
and Table 2). In particular, knockdown of MCPH1 and 
CDK1, two known regulators of condensin II function 
(Abe et al., 2011; Yamashita et al., 2011), showed a 
considerable lengthening of prophase with both siRNAs, 
which suggests that this phenotypic category also 
identified true regulators of mitotic chromosome 
condensation. In total, our screen validated six of the nine 
query genes and identified 32 potential new genes that 
showed defects in chromosome condensation in early 
mitosis, corresponding to an initial hit rate of 32%. 
Although this hit rate is defined by single siRNA hits and 
follow-up experiments are required to confirm individual 
genes as bona fide chromosome condensation genes, this 
definition is adequate to demonstrate that the gene 
selection method produced a library strongly enriched in 
genes with the expected phenotypes. For comparison, 
similarly defined hit rates are typically ∼5% in many 
other primary screens of genome-scale or protein family–

based (e.g., kinome) siRNA libraries (Sigoillot and King, 
2011). 

Quantitative analysis of chromosome condensation 
phenotypes 

Some of our hits—for example, condensin II and 
MCPH1—have also been implicated in DNA double-
strand-break repair (Wood et al., 2008). To rule out that 
our mitotic condensation assay detected indirect effects of 
a primary function in DNA repair, we tested whether 

Table 2 | Genes with chromosome condensation phenotypes. 

Hits with short prophase Hits with long prophase 

SMC2 MCPH1 

NCAPH2 DNMT3B 

NCAPD3 CDK1 

NCAPG2 PAPD5 

RAN GINS1 

CDCA5 NAA10 

SMC4 TOP2A 

TRAF3IP1 RUVBL2 

CBX5 NEK6 

HDAC1 MYC 

AKAP8 SIAH1 

TAL1 SMC1A 

KIF22 POLR3C 

HILS1 H1FNT 

NUTF2 PTP4A3 

BRF1 INTS1 

PJA1 BRCA2 

TOP1 MYST3 

SEP15_HUMAN  

NAA10  

CHFR  

INTS1  

 



knockdown of our hits led to increased DNA damage, 
using immunostaining for a phosphorylated form of 
H2AX induced by DNA double-strand breaks (Rogakou 
et al., 1998). Knockdown of the condensation genes did 
not lead to a detectable increase in the fraction of γ-
H2AX–positive cells above the basal levels of 
spontaneous DNA damage present in HeLa cells 
(Figure 4), whereas low doses of the DNA polymerase 
inhibitor aphidicolin readily led to increased DNA 
damage, as reported previously (Lukas et al., 2011). 
Therefore the changes in mitotic chromatin texture 
detected in our screen are unlikely to be caused by DNA 
double-strand breaks. 

 
Figure 4 | Fraction of cells showing signs of DNA damage. The 
fraction of γ-H2AX–positive cells is expressed as the average 
percentage of the total number of cells from three experiments. Error 
bars represent SDs of the means. 

To characterize the chromosome condensation defects in 
prophase of several of the hits in more depth, we next used 
high-resolution three-dimensional (3D) confocal time-
lapse imaging of HeLa cells expressing H2B-eGFP to 
quantify changes in chromatin volume from prophase to 
anaphase onset. Our previous approaches to chromatin 
volume measurements relied on time-consuming manual 
processing of image stacks (Mora-Bermudez et al., 
2007). To be able to process dozens of cells from different 
gene knockdowns, we implemented a computational 
pipeline to segment the chromatin signal in three 
dimensions and compute its volume. Because changes in 
chromatin compaction cause large variations in intensity, 
which could cause undersegmentation or 
oversegmentation, segmentation was constrained such 

that the total intensity of the chromatin volume remained 
constant and equal to the intensity in prometaphase. 
Segmentation was implemented using a combination of 
image stack–level threshold and slice-specific threshold. 
The image stack threshold was determined by analyzing 
the histogram constructed from all the pixels within the 
image stack under consideration, and a slice-specific 
threshold was determined in a similar way using only 
pixels from the slice under consideration. An iterative 
algorithm was then used to adjust global and local 
thresholds to minimize the deviation between the total 
intensity in the prometaphase image stack and that in the 
processed stack (see Materials and Methods). The 
absolute volume of chromatin was estimated by the 
number of segmented voxels multiplied by the voxel size. 
Finally, to minimize cell-to-cell variations, we 
normalized chromatin volumes relative to interphase 
chromatin volume. In control cells, reduction in 
chromatin volume followed a sigmoidal decay curve 
(Figure 5A) consistent with previous measurements of 
chromatin volume (Mora-Bermudez et al., 2007) and 
similar to the diminution of the distance between two loci 
observed during chromosome condensation in 
Schizosaccharomyces pombe (Petrova et al., 2013). 
Therefore, as in this study, we fitted the changes in 
chromatin volume over time with a sigmoidal function to 
derive parameters for the duration of condensation, the 
compaction ratio, and the time of the midpoint of 
condensation relative to prometaphase (Figure 5B; see 
Materials and Methods). All knockdowns showed 
differences from control cells in several parameters 
(Figure 5C; representative curves in Supplemental 
Figure S4). In control cells, most of the chromatin 
compaction proceeded over 10–11 min, resulting in an 
about twofold reduction in volume (Supplemental Table 
S3). In contrast, chromatin compaction required only 5–7 
min in knockdowns with short prophase and 12–23 min 
in knockdowns with long prophase (Supplemental Table 
S3). Shortened prophase condensation correlated with a 
time of mid-condensation closer to NEBD, whereas 
longer prophase correlated with mid-condensation time 
much before NEBD. As previously observed (Petrova 
et al., 2013), cells with a strong phenotype gave aberrant 



curves that were poorly fitted with the chosen sigmoid 
function (see example in Supplemental Figure S6), 
resulting in underestimation of the deviation from normal 
cells. Of interest, we noticed that in some knockdown 
cells with reduced prophase, NEBD was accompanied by 
a transient increase in chromatin volume. To investigate 
this further, we analyzed 25 NCAPD3-knockdown cells. 
Of these, 10 exhibited a small increase in chromatin 
volume at NEBD (Figure 5D) associated with very short 
or undetectable prophase. This effect is significant, as it 

is never observed in control cells (10 of 25 NCAPD3 
knockdowns vs. 0 of 25 control cells; Fisher exact test, p 
< 0.003) or in NCAPD3-knockdown cells with weaker or 
no phenotype, revealing that chromatin would expand in 
the absence of a confining nuclear envelope unless 
mitotic condensation compacts it before NEBD. 

Independent validation of chromosome condensation 
genes 
siRNA-mediated gene silencing has the potential of 
hitting other genes than the intended targets. We used two 

different approaches to validate the gene targets of 
the siRNAs that scored in our chromosome 
condensation assay. First, we checked whether the 
same phenotype could be reproduced by both 
independent siRNA sequences targeting the same 
gene. Several genes scored as hits with two siRNAs 
(shorter prophase: BRF1, CBX5, RAN, and 
TRAF3IP1, in addition to NCAPD3, NCAPG2, 
NCAPH2, and SMC2; longer prophase: CDK1, 

Figure 5 | Quantification of chromosome condensation. 
(A) Evolution of normalized chromatin volume in control 
cells. Top, maximum intensity projection images (top) and 
isosurface reconstruction (bottom) of the chromatin from a 
representative scrambled siRNA–treated control cell at 
different time points. Occasionally cell rounding in 
metaphase brings chromatin slightly out of imaging range, 
resulting in a missing image slice. The missing part is then 
estimated (see Materials and Methods). The curve 
represents the average of 10 control cells from four 
independent experiments. Error bars represent SDs of the 
means. (B) Definition of chromosome condensation 
parameters. A sigmoidal decay curve (blue line) is fitted to 
normalized chromatin volume over time. The fit defines the 
maximum and minimum volumes, the compaction ratio, 
and the duration and timing of condensation relative to 
prometaphase. (C) Heatmap of chromosome condensation 
parameters in gene-knockdown experiments. The color 
scale encodes the number of pooled SDs away from the 
negative control mean. Values smaller than in control are in 
blue, and values higher than in control are in red. (D) 
Absence of prophase condensation correlates with 
chromatin expansion before NEBD. NCAPD3-knockdown 
cells with almost no prophase (red curve) show transient 
chromatin decondensation at the time of NEBD 
(arrowhead), whereas this is never seen in control cells 
(blue curve). Error bars show SDs of the means (n = 25 for 
control cells, n = 10 for NCAPD3-knockdown cells 



H1FNT, and MCPH1) and can therefore be considered 
high-confidence hits. Second, to test some of the hits that 
scored with one siRNA—that is, DNMT3B and PAPD5 
from the “longer-prophase” and HDAC1 and TOP1 from 
the “shorter-prophase” category, we assayed the 
condensation phenotype in a genetic mutant of the 
orthologous genes in the fission yeast S. pombe. For this, 
we took advantage of a recently developed chromosome 
condensation assay that measures the distance of two 
fluorescently labeled loci located ∼1 Mb apart on the 
same chromosome arm (Petrova et al., 2013). As wild-
type cells enter mitosis, the 3D distance between the two 
loci decreases as a consequence of condensation until the 
onset of anaphase (Figure 6A). By fitting of the 
condensation kinetics with a sigmoidal function, the 
maximum and minimal distances between the loci, the 

corresponding compaction ratio, and the duration and 
timing of compaction can be determined in a similar 
manner to our chromatin volume measurements. We 
introduced mutations in the S. pombe orthologues of these 
genes (pmt1Δ, cid14Δ, clr6-ts, and top1Δ, respectively) 
into the yeast strain with the fluorescently marked 
chromosome arm loci and analyzed their condensation 
behavior. In all mutants, we could observe significant 
differences from wild-type cells for several condensation 
parameters (Figure 6B, Supplemental Information, and 
Supplemental Table S4), demonstrating that they affect 
mitotic chromosome condensation. This is consistent 
with the phenotype of their orthologues in HeLa cells 
(Supplemental Figure S5; see Supplemental Information 
for a more detailed comparison). We therefore consider 
them also high-confidence hits. In total we could thus 
validate 11of 32 new chromosome condensation genes as 
high-confidence hits and expect that the remaining 21 
new genes contain a number of additional high-
confidence hits. 

Discussion 

Combined kernels on graphs of biological information 
are effective at information retrieval 

We chose to view individual data types on gene function 
as graphs and measure functional similarity between 
genes as nodes of these graphs using kernels because of 
their attractive properties for data integration and mining. 
We limited our study to a few kernel functions with a 
preference for those that are parameter free. We 
demonstrated that the commute time was a powerful and 
parameter-free measure of similarity between genes 
across various biological data types viewed as graphs. It 
performed well in retrieving known functional 
relationships from various data sets, and among all 
kernels tested, it appeared the most robust, since it always 
gave the best or close to the best performance for each 
data type. In contrast, performance varied more widely 
for the other kernels depending on the data type. In 
particular, the diffusion kernel performed poorly for some 
values of its parameter, illustrating the importance of 
parameter choice for kernels with free parameters. Except 
for the diffusion kernel, the graph-derived kernels we 

Figure 6 | Mitotic chromosome condensation in S. pombe 
mutants. (A) Chromosome condensation assay in S. pombe. 
Images of S. pombe cell in which two loci are labeled by binding 
of TetR fused to tdTomato (red) and LacR fused to GFP (green), 
respectively, to TetO and LacI tandem arrays integrated ∼1 Mb 
apart on the same arm of chromosome I. (B) Heatmap of 
chromosome condensation parameters in tested S. pombe mutants. 
The color scale encodes the number of SDs away from the wild-
type mean. Values smaller than in wild type are in blue and values 
higher than in wild type are in red. 



used were less sensitive to bias introduced by highly 
connected genes. To our knowledge, our approach is the 
first to compare performances of different kernels and 
identify the best kernel for a particular data set before 
integrating it with other data. We furthermore showed that 
integration of several data types improved information 
retrieval power and that these data types were best 
integrated by combining the graph-derived kernels using 
the best kernel function for each data type rather than the 
graphs themselves as in GeneMANIA (Mostafavi and 
Morris, 2010). Therefore our approach compares 
favorably with state-of-the-art algorithms on information 
retrieval. 

Combined kernels are powerful predictors of gene 
function 

The interdependent nature of biological databases can 
lead to a good performance of computational methods in 
information retrieval but makes it difficult to assess 
performance for predicting new genes for biological 
functions. To test the kernel performance, we therefore 
tested new gene function predictions more stringently 
using data from genome-scale RNAi screens that were not 
included in our data sources. We could show that the top-
ranked kernel-predicted genes are significantly enriched 
in the expected phenotypes for all five phenotypes 
queried with example genes (mitosis defect, cytokinesis 
defect, increased cell motility, DNA damage response, 
and NF-κ B activation). Nevertheless, many of the top 
kernel-predicted genes did not score as hits in the screens 
examined. This can be explained by either false positives 
in the predictions or false negatives in the screens. False-
positive predictions could be produced if most of the 
genes in the query are not relevant. Therefore care has to 
be taken in the selection of query genes, and there may be 
better ways of selecting query genes for a particular 
process than using annotations from Gene Ontology as 
used here. In addition, it is likely that a significant fraction 
of the kernel-predicted genes that did not score 
correspond to false negatives in the screens. Indeed, false-
negative rates between 8 and 34% have been reported in 
Drosophila (Liu et al., 2009; Booker et al., 2011) and 
human cells (Neumann et al., 2010). It is therefore likely 

that our virtual screen validation underestimated the 
kernel prediction power and instead provides a lower 
bound on the prediction performance. 

It should also be noted that genes not represented in the 
source data are not accessible to the method. To be able 
to select completely uncharacterized genes, genome-wide 
experimental data sets or ab initio (e.g., sequence-
derived) data would have to be included. However, our 
preliminary tests of genome-wide microarray data and 
sequence-based predicted interactions led us to exclude 
these data sets for making predictions because of poor 
performance. 

Although the kernel combination approach slightly but 
consistently outperformed GeneMANIA, we note that it 
is difficult to demonstrate that any approach is the best 
possible without extensive experimental validation of all 
alternative methods. Nevertheless, the success rate of our 
predictions represents a fivefold increase over genome-
wide screening, which in this context makes graph-
derived, kernel-based gene ranking of practical value. For 
example, scaling up our high-resolution time-lapse 
imaging assay to cover the ∼21,000 protein-coding genes 
identified in the human genome would require more than 
200 TB of disk space just to store the microscopy images, 
and the cost in reagents and consumables alone would 
reach several hundred thousand dollars. Therefore in 
silico genome-wide prescreening of genes to focus 
experimental testing on the top-ranked candidates can be 
an excellent alternative to costly and labor-intensive 
genome-wide experiments. Kernels on graph nodes 
represent a powerful method for gene function prediction, 
representing an easy-to-use “funnel” for the selection of 
candidate genes, and we therefore make our software 
freely available to the community at http://funl.org. 

Kernels predict new genes that function in chromosome 
condensation 

Finding new chromosome condensation genes has proven 
to be difficult for many years. This is possibly because 
condensation requires multiple contributing activities 
that, when singly inactivated, would produce only minor 
and transient condensation defects. Capturing these subtle 
phenotypes therefore requires quantitative monitoring of 



chromosome condensation in living cells, which is very 
difficult to do on the genome scale but is feasible with a 
candidate gene set. We therefore used this very sensitive 
phenotypic readout to screen the top-100-ranked kernel-
predicted genes involved in mitotic chromosome 
condensation. Strikingly, these contained 32 new genes 
that caused a reproducible mitotic chromosome 
condensation phenotype upon knockdown that had not 
been previously described in mammalian cells. Eleven of 
the 32 genes score as high-confidence positives and 
therefore open new avenues for experiments. For 
example, TRAF3IP1 is involved in primary cilium 
formation (Berbari et al., 2011) and has also been 
implicated in signal transduction pathways (Niu et al., 
2003; Ng et al., 2011) but not in chromosome 
condensation. Our study also clarifies several leads from 
the literature that had not been followed up. For example, 
histone deacetylases have been implicated in 
chromosome condensation with conflicting results (e.g., 
Cimini et al., 2003; Dowling et al., 2005) and without 
resolving the identity of the HDAC(s) involved. 
Similarly, DNA methylase DNMT3B was found 
associated with chromatin genes, including several 
condensin subunits (Geiman et al., 2004), but its role in 
mitotic chromosome condensation had not been 
demonstrated. Our work also highlights how a 
computational approach can find indirect connections 
between genes that would otherwise be difficult to find 
manually. For example, whereas PAPD5 is postulated to 
be a component of the human TRAMP complex involved 
in polyadenylation of RNAs and their subsequent 
targeting for degradation by the exosome (Schmidt and 
Butler, 2013), a mutation in trf4, a PAPD5 homologue in 
Saccharomyces cerevisiae, genetically interacts with top1 
deletion to cause defects in ribosomal DNA condensation 
(Castaño et al., 1996). 

Quantitative analysis of prophase chromosome 
condensation reveals a new functional aspect 

Although mitotic chromosome condensation is inherently 
a dynamic process, very few studies have quantified it in 
live cells with a high temporal resolution, and, to our 
knowledge, no live-cell analyses of perturbations of the 

condensation process have been reported. Changes in the 
texture of fluorescently labeled chromatin between 
interphase and prometaphase are commonly used to 
define prophase. Our screen was based on the assumption 
that this definition of prophase reflects changes in 
chromatin volume. To test this assumption and further 
characterize chromosome condensation, we 
computationally analyzed high-resolution images from 
3D time-lapse confocal microscopy to quantify chromatin 
volume during mitosis in control cells and in knockdowns 
of several hits from the screen. The observed variations in 
chromatin volume correlated well with the length of 
prophase as defined by texture classification under all 
conditions, confirming that chromatin texture is a good 
indicator of chromosome condensation. The volume 
measurements showed that gene knockdowns affected 
primarily the kinetics of compaction rather than the final 
compaction state of chromatin, consistent with the 
assumption of subtle phenotypes due to additive 
requirements of multiple factors. Volume analysis 
furthermore revealed that in the absence of prophase 
condensation, chromatin transiently expanded when the 
constraint of the nuclear envelope boundary was released 
by its breakdown at the end of prophase. Although the 
prompt prometaphase chromosome compaction rapidly 
reversed this expansion, this observation suggests a 
potential new function for prophase condensation, that is, 
to prevent chromatin leakage from the nucleus at NEBD. 

Materials and Methods 

Reference genome 

For building graphs and evaluating the kernels, we 
considered only human protein-coding genes from the 
Ensembl 56 release (September 2009). In preparing the 
data sources and pathways for evaluation, any identifier 
that could not be unambiguously assigned to an 
Ensembl56 protein-coding gene was discarded. 

Ensembl 61 (February 2011) was used for the inference 
of siRNA target genes. 



Data sources of gene interactions 

BP: GO similarities across biological processes were 
calculated using the Ensembl56 GO assignments, 
computed as root term frequency/frequency of the most 
informative common ancestor term and discarding pairs 
with score less than some threshold to remove unspecific 
connections through high-level GO terms. Here the 
threshold is arbitrarily set as the information content of 
the term “chromosome condensation.” Similarities 
between genes were calculated using the maximum GO 
similarity between them. 

HIPPO: iRefIndex (Razick et al., 2008; accessed 29 June 
2010) binary interactions from other organisms mapped 
to human using Ensembl orthology information. Edge 
weights are set to 1 over the product of the number of 
human orthologues of each interaction partner to reflect 
confidence of association. In this scheme, interactions 
whose partners both have a unique orthologue in human 
get a weight of 1. 

MEMP: Gene coexpression network using absolute 
Pearson correlation and rank aggregation across many 
data sets. All-against-all coexpression was calculated 
from 764 public data sets and aggregated using the MEM 
tool with default parameters (Adler et al., 2009). Probe 
sets were mapped to Ensembl 56, and ambiguous probe 
sets were removed. In case of multiple probe sets 
mapping to the same Ensembl ID, median score was used. 
To construct the graph, edge weights were taken as 
negative log of the best corrected p value associated with 
each edge. 

PI: compilation of physical protein–protein interactions 
from the following databases: IntAct, MINT, MIPS, 
STRING, BIOGRID, DIP, HPRD, and Reactome 
(accessed 11 October 2010). Each protein was assigned 
to an Ensembl56 gene using Ensembl56’s external 
references if the gene was not already identified by an 
Ensembl ID in the source database. We noticed that some 
genes considered common contaminants in pull-down 
experiments analyzed by mass spectrometry (e.g., UBC) 
have a high number of interactors. In an attempt to reduce 
nonspecific interactions, eight genes with >300 
interaction partners were removed: ENSG00000078369 

(GNB1), ENSG00000150991 (UBC), 
ENSG00000170027 (YWHAG), ENSG00000164924 
(YWHAZ), ENSG00000141510 (TP53), 
ENSG00000197122 (SRC), ENSG00000146648 (EGFR), 
ENSG00000177885 (GRB2), and ENSG00000127928 
(GNGT1). 

TM: An interaction graph was generated using the iHOP 
natural language processing protocol (Hoffmann and 
Valencia, 2004 , 2005). Genes were identified in abstracts 
in September 2010 using iHOP by mapping to their 
HGNC names. A physical interaction link was created 
between two genes if they were connected by a verb 
implying physical binding (e.g., AURKB binds 
INCENP). Each identified interaction was given a weight 
corresponding to the confidence of the genes in the 
interaction being the correct HGNC genes. 

CODA: CODA is a reliable fused domain prediction 
method. This method looks for and scores protein pairs in 
a given target genome (e.g., human) found as fused (co-
occurring) domain architectures in homologues from 
genomes of other species (Reid et al., 2010). The CODA 
method was run against all sequences in the human 
proteome using CATH and Pfam protein domain 
annotations, and both (CODAcath and pfam) were 
combined into one single data set (Morilla et al., 2010). 
CODA predictions were benchmarked using the BP data 
set as positive examples and randomizations of this data 
set as negative examples. The CODA data set used in this 
work was formed by CODA-predicted interactions at a 
cut-off precision of at least 80%. 

Kernels 

Kernel methods work by mapping data points (e.g., 
genes) into some high-dimensional space (called feature 
space) and computing the dot product of the 
corresponding vectors. That is, for a mapping function Φ 
and two genes x and y, the kernel function K computes 
K(x, y) = 〈Φ(x), Φ(y)〉. A kernel matrix contains the 
evaluation of a kernel function for all pairs of data points 
under consideration and can be viewed as a similarity 
matrix. It can be shown that any symmetric, positive-
semidefinite matrix represents a kernel corresponding to 
a dot product in some feature space (Shawe-Taylor and 



Christianini, 2004). So, if we can compute the kernel 
matrix directly, we do not need to know the mapping 
function or the feature space. This property makes kernel 
methods applicable to nonvectorial data such as nodes of 
graphs or sequences as long as some similarity matrix that 
is symmetric and has no negative eigenvalues can be 
computed. An additional property of kernels that is of 
interest for data integration is that various mathematical 
operations on kernels produce a valid kernel. In 
particular, a linear combination of several kernels is a 
kernel (Shawe-Taylor and Christianini, 2004). This 
means that a combination of similarity matrices can still 
be interpreted as a matrix of similarities if the combined 
matrices are valid kernels. This property makes kernels 
particularly attractive for data integration because it 
provides a principled way of combining information from 
different sources into one similarity matrix. 

In this work, each data set is viewed as the adjacency 
matrix A of a weighted undirected graph, and a value Aij 
of 0 indicates no edge between i and j. In the following, 
D denotes the diagonal degree matrix, I the identity 
matrix, and L the graph Laplacian (L = D − A). The 
following kernels on graph nodes were computed. 

Kernelized adjacency matrix (A). 

Our data sources already represent a measure of similarity 
between genes. To compare them with the derived 
kernels, we ensure that the original matrix is positive 
semidefinite by shifting its eigenvalues. This is 
accomplished by adding a sufficiently large constant to 
the diagonal of each matrix. Here we use λ, the absolute 
value of the smallest eigenvalue of A:  

 
 

Commute time kernel (CT). 

This kernel arises from the computation of the average 
number of steps a random walker on a graph needs to go 
from one node to another and back (Fouss et al., 2007; 
Qiu and Hancock, 2007 ). It also has an interpretation in 
terms of electrical networks, as the commute time is equal 
to the effective resistance between two nodes (Xiao and 
Gutman, 2003). Note that the commute time kernel does 
not represent the commute time itself but corresponds to 

the dot product of the vectors representing the nodes in a 
space where these nodes are exactly separated by their 
commute time: 

 
 

Random forest kernel (RF). 

This kernel arises from the enumeration of the spanning 
rooted forests in the graph and measures the relative 
“forest accessibility” between nodes (Chebotarev and 
Shamis, 1997). It also has an interpretation in terms of 
probabilities of reaching a node in a random walk with a 
random number of steps (Chebotarev, 2008). This kernel 
is used by the GeneMANIA algorithm in the context of 
Gaussian random field label propagation (Mostafavi and 
Morris, 2010): 

 
 

von Neumann diffusion kernel (VN). 

This kernel enumerates all paths between two nodes while 
penalizing the longer paths and has an interpretation in 
terms of diffusion on the graph (Shawe-Taylor and 
Christianini, 2004): 

 
 

The penalizing factor is αk (k being the length of the path). 
and the kernel is defined for 0 < α < ρ−1, with ρ being the 
spectral radius of A. Although α could be learned from the 
data, we chose here to explore three values toward the 
lowest, middle, and highest point of the valid range. We 
compare three VN kernels: 

 
 

 
 

which correspond, respectively, to upper, middle, and 
lower values of the admissible range for α, ρ being the 
spectral radius of A and κ the proportion of nonzero 
elements in A (κ is very low, and so for VNmax, α ≈ ρ−1). 



Each kernel is computed separately for each connected 
component of the graph. 

Genes with multiple functions or that are more studied 
tend to have more links to other genes. To compensate for 
this effect, each kernel is normalized by diag(K)−1/2K 
diag(K)−1/2 (which corresponds to computing the cosine of 
the vectors in the feature space of the kernel). 

Degree-based similarity (DB). 

We also computed a similarity matrix based only on node 
degree as in Gillis and Pavlidis (2011): 

 
  

Ranking algorithm 

For a kernel K and a given pathway, we compute the score 
s = Ky, where y(x) = 1 if gene x is part of the query and is 
0 otherwise. Genes are then ranked by s(x), which is the 
sum of the similarities between gene x and all query 
genes. For a given gene, the higher the score, the more 
similar this gene is to the query. We note that this 
procedure does not use the fact that the matrices are valid 
kernels, only that they encode some notion of similarity. 
Unlike in supervised classification (e.g., using support 
vector machines), the similarity depends on the 
distribution of the unlabeled points because the kernels 
are computed over the whole graph. 

Kernel performance evaluation 

We want to evaluate how well the kernels recapitulate 
current biological knowledge. As representation of 
established knowledge about a diverse range of biological 
functions, we chose to use all Panther pathways (Mi et al., 
2005; from version 3.01) with ≥12 genes (79 pathways). 
Each pathway is evaluated using the leave-one-out cross-
validation procedure. Similar results were obtained using 
a simple holdout method in which, for each pathway, 10 
genes were randomly selected as targets and the rest used 
as query. Sensitivity is defined as the fraction of target 
genes from the pathway such that rank[target] ≤ N. 
Because different kernels can return a different number of 
ranked genes for a given query, a kernel that ranks more 
genes is more likely to rank some as-yet-unknown true 

positives better than the known ones. This means that test 
genes could get a worse rank with a kernel that retrieves 
more genes than with a kernel that returns fewer genes. 
To account for this and obtain a fairer comparison, ranks 
are normalized by the percentage of the genes returned. 
To estimate the false-positive rate, we assume that 
random selection yields unrelated genes and apply leave-
one-out cross-validation to randomly formed lists of 
genes of the same sizes as the Panther pathways. 

RNAi screen in HeLa cells 

We prepared siRNA-coated 96-well plates as described 
previously (Neumann et al., 2010). We seeded 4000 
HeLa cells stably expressing HIST1H2BJ-mCherry and 
LMNA-eGFP in each well and incubated them for 17 h at 
37 C and 5% CO2. After 17 h of incubation, the medium 
was replaced by preheated CO2-independent imaging 
medium (Invitrogen; containing 10% heat-inactivated 
fetal calf serum, 2 mM glutamine, 100 U/ml penicillin, 
and 100 µg/ml streptomycin). Gas exchange was 
prevented by sealing the plates with Baysilone paste 
(Bayer, Leverkusen, Germany). Plates were then kept at 
least 1 h in the preheated incubation chamber of the 
microscope before imaging. Images were acquired with 
an automated epifluorescence microscope (IX-81; 
Olympus-Europe, Hamburg, Germany) with a 20× 
objective and a time interval of 8.5 min for 44 h. Four 
independent replicates were acquired for each siRNA 
treatment. 

Screen image analysis 

Images were processed using the CellCognition software 
(Held et al., 2010). Only the H2B-mCherry channel was 
used. After segmentation, a training set was assembled by 
manually assigning ∼1800 nuclei from negative control 
wells to one of the following 10 classes based on the 
morphological aspect of the nuclei: interphase, early 
prophase, late prophase, prometaphase, metaphase, early 
anaphase, late anaphase, apoptosis, artifact, and out of 
focus. Early prophase was defined as the first visually 
detectable changes in the texture of chromatin after 
interphase, and late prophase was defined as the first 
appearance of clearly condensed chromatin before 



prometaphase. This late-prophase definition corresponds 
to events preceding complete disassembly of the nuclear 
envelope as judged by the LMNA-eGFP marker. All 
nuclei were then automatically assigned by a multiclass 
support vector machine to one of these classes. Mitoses 
were detected as any transition from interphase to one or 
more of prophase, prometaphase, or metaphase followed 
by at least one of either metaphase or anaphase. Mitotic 
nuclei were then tracked for 22 frames (eight before the 
detected transition and 14 after). Mitoses with too-dark 
nuclei or for which the first eight frames before the 
transition were not classified as interphase (e.g., out-of-
focus nuclei) were discarded. Wells with fewer than five 
valid mitoses were discarded. 

Hit detection 

Lack of condensin function, which results in absence of 
condensation in prophase, translated in our screen as a 
shorter prophase because the prophase class definition is 
based on the visual appearance of condensation before 
nuclear envelope breakdown. In negative control cells 
(i.e., treated with nontargeting siRNAs), the mode of 
duration of prophase was two frames (17 min). To get an 
overview of the screen, we derived a short prophase score 
for each gene as the median of the difference in the 
fraction of shorter prophase between all replicates 
involving the gene and corresponding negative controls 
(i.e., nontargeting siRNA). Similarly, we defined a long-
prophase score by looking at the fraction of mitoses with 
prophase lasting >17 min. Then for each well, we tested 
whether the fraction of mitoses with prophase less 
(respectively more) than two frames was significantly 
different from the corresponding plate's pooled negative 
controls (Fisher's exact test with p < 0.1). A siRNA was 
then considered to affect mitotic chromosome 
condensation if it produced the same significant change 
in prophase duration in at least two replicates. A 
combined p value over replicates was calculated using the 
QFAST algorithm (Bailey and Gribskov, 1998), and 
siRNAs with combined p > 0.05 were not considered as 
hits. 

Confocal microscopy 

HeLa cells stably expressing H2B-eGFP were seeded in 
siRNA-coated wells of 96-well plates as for the screen 48 
h before imaging. For imaging, culture medium was 
replaced by prewarmed, CO2-independent imaging 
medium; the plate was then sealed with silicon grease and 
set in the confocal microscope incubation chamber at 
37°C. Imaging was performed with a Zeiss LSM 780 
confocal microscope (Carl Zeiss Microscopy, Jena, 
Germany) using a 63×/1.4 numerical aperture (NA) 
objective with a resolution of 0.132 × 0.132 × 0.9 µm × 4 
min over a period of 18 h during which three cells were 
imaged for each of the following siRNAs: Neg9 (negative 
control), s25157 (TRAF3IP1), s74 (HDAC1), s4223 
(DNMT3B), s23531 (NCAPD3), s6323 (BRF1), s14304 
(TOP1), s36005 (MCPH1), and s34602 (PAPD5). Four 
such imaging rounds were carried out, except for 
NCAPD3 and negative control, for which images were 
acquired over additional rounds to image a total of 25 
mitotic cells for each siRNA treatment. Under these 
conditions, no significant cell death or eGFP 
photobleaching was observed, and mitosis was not 
affected. Images of cells not entering mitosis were 
discarded. To account for variable phenotypic penetrance 
in gene knockdowns, cells were manually annotated for 
prophase duration using maximum intensity projection 
images, and cells with the same phenotype (i.e., shorter or 
longer prophase) as in the screen were kept for further 
processing. 

Chromatin volume quantification 

A fully automated computational pipeline to derive 
chromatin volume from confocal image stacks was 
implemented in Matlab and is described below. 

Intensity decay with increasing distance from the 
coverslip surface was modeled as an exponential function 
of distance from the surface (Kervrann et al., 2004). 
Intensity-corrected stacks were interpolated to have an 
isotropic resolution along xy and z to provide greater 
flexibility in 3D image analysis. A 3D Gaussian filter was 
then applied on the interpolated stacks to reduce the 
effects of noise. Large variations in chromatin 
compaction in different mitotic phases lead to highly 



variable intensity/brightness of the chromatin area, which 
can cause undersegmentation or oversegmentation, 
depending on the mitotic phase. To deal with this, 
segmentation was constrained such that the intensity sum 
contained in the segmented chromatin volume within a 
3D stack remained constant for all time points (Mora-
Bermudez et al., 2007). To enforce this constraint, the 
stack containing the first prometaphase was selected as a 
reference and processed first. A global threshold was 
determined by analyzing the histogram constructed from 
all the pixels within the stack. This threshold was adapted 
for each slice by combining a second (local) threshold 
determined similarly for which only pixels within a 
particular slice were considered to construct the 
histogram. This combination of local and global 
thresholds within a stack significantly avoided 
oversegmentation and undersegmentation. To segment 
the stacks at other time points, the intensity sum contained 
in the segmented chromatin volume in the prometaphase 
stack was used as a reference. This also allowed 
estimation of small missing parts of chromatin in 
metaphase when cell rounding occasionally pushed the 
chromatin mass slightly out of imaging range. Highly 
compacted chromatin sometimes resulted in sections with 
saturated pixels. Loss of intensity due to saturation was 
estimated based on a logarithmic function of the number 
of saturated pixels. Then an iterative approach was 
applied that increased/decreased the global threshold and 
readjusted the local thresholds proportionally in order to 
obtain a refined segmentation that minimized the 
deviation between the total intensity in the reference stack 
and that in the processed stack. The absolute volume of 
chromatin was estimated by the number of segmented 
voxels multiplied by the voxel size. 

For compaction analysis, chromatin volumes were 
normalized relative to interphase chromatin volume, 
defined as the average of the volumes at the first three 
time points starting 1 h before anaphase onset. Curves 
were then aligned on the first prometaphase image taken 
as time t = 0 min. The curves of volumes over time were 
fitted (as in Petrova et al., 2013) with the following 
sigmoidal function: 

 

 

where V is the chromatin volume and t the time relative 
to prometaphase. From this, we derived the following 
parameters: 

Compaction ratio: r = Vmax/Vmin. 

Duration: Δt = t95% – t5% (where t95% and t5% represent the 
time points at which the volume has decreased by 95 and 
5% of the total compaction, respectively). 

Time to prometaphase: tprometa = t(0) – t50% (where t50% 
represent the time point at which the distance has reached 
50% of the total compaction). 

Average values of these parameters for different gene 
knockdowns are given in Supplemental Table S3. 
Parameters from poorly fitted curves to MCPH1 
knockdown data were discarded (see example in 
Supplemental Figure S6). 

γ-H2AX immunostaining and analysis 

We prepared 96-well plates as for the screen (Neumann 
et al., 2010) with the following siRNAs: Neg9 (negative 
control), s25157 (TRAF3IP1), s74 (HDAC1), s4223 
(DNMT3B), s23531 (NCAPD3), s6323 (BRF1), s14304 
(TOP1), s36005 (MCPH1), and s34602 (PAPD5). In 
addition, three wells were treated with 0.2, 0.4, and 0.8 
µM aphidicolin to serve as positive controls. 

HeLa cells stably expressing H2B-mCherry were grown 
on the siRNAs for 48 h and then fixed with a solution of 
3.7% paraformaldehyde in phosphate-buffered saline 
(PBS) for 15 min at room temperature, permeabilized 
with 0.5% Triton X-100 in PBS for 10 min, incubated 
with a mouse monoclonal antibody against 
phosphorylated H2AX (ab22551; Abcam, Cambridge, 
UK) in PBS plus 0.1% Tween 20 plus 2% bovine serum 
albumin, washed three times, incubated with an Alexa 
488–conjugated anti-mouse antibody, washed three 
times, and incubated 5 min with 0.1 mg/ml Hoechst 
33342 in PBS and washed twice. Images were acquired 
from four fields in each well with an automated 
epifluorescence microscope (IX-81; Olympus-Europe) 
with a 40× objective. Using the CellCognition software, 
nuclei were segmented in the Hoechst channel, and a 



classifier was trained on a set of nuclei with positive and 
negative γ-H2AX staining. 

S. pombe experiments 

We give here a brief summary of the procedure described 
in Petrova et al. (2013). A yeast strain with two 
fluorescently labeled loci was constructed by integrating 
a tandem array of lactose operators and a tandem array of 
tetracycline operators ∼1 Mb apart on the arm of 
chromosome I and expressing a tetracycline repressor 
fused to tdTomato and a lactose repressor fused to GFP. 
Mutations for the tested genes were then introduced into 
this strain. For live-cell imaging, cells enriched for G2 
phase were attached onto lectin-coated microscopy 
dishes, and images were taken on a DeltaVision (Applied 
Precision, Issaquah, WA) microscope using an Olympus 
UPlanApo (100×, NA 1.35) objective. Z-stacks with a 
step size of 0.4 µm were recorded every 40 s for a period 
of 60 min using a dual-band filter set for GFP or tdTomato 
fluorescence. Image processing to determine the distance 
between the marked loci was implemented in ImageJ 
(Schneider et al., 2012). For each experiment, distances 
measured from at least 14 cells were averaged, and the 
resulting curve was fitted with the same function used for 
chromatin volume. Average values and SDs for all 
parameters in wild-type yeast cells were computed from 
four different experiments. Parameter values are listed in 
Supplemental Table S4, and Supplemental Table S5 lists 
the genotypes of the yeast strains used. 
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