B. Zarnik: Über den feineren Bau der Niere von Echidna,

 Die Niere von Echidna hystrix ist eine sog. einfache Niere ohne Calices. Dem Marke fehlt jegliche Art von Schichtung, da die Schleifen keine regelmässige Anordnung zeigen. Auch die Rinde ist nicht scharf begrenzt, ferner fehlt ihr eine Cortex corticis, da von Kanälchen: Scha an der Peripherie vorkommen. Es gibt 3 Arten (richtige sog. lange Schleifen fer Umbiegung im dicken trüben Teil der helle dünne Teil fehlt, und Zen vollkommen), Rindenschleifen, denen in der obersten Rindenlage ${ }^{\text {wwergkanälchen, winzige Gebilde, welcle }}$ kanälchen ähnlichen Ban sind bedeutend kleiner als zeigen. Die Glomeruli der Zwergkanälchen diesen Befunden ergibt tis die Glomeruli der anderen Tubuli. Aus ungeschichtete Niere ist, dass dass der Urzustand der Säugerniere eine deutliche Schichtung des Mass also die Niere des Menschen, die keine vom Kaninchen oder von der Karkes zeigt, primitiver ist als die Niere ausgeprägt ist. Nachdem Lage Zwergkanälchen wauch in der Reptilienniere in der obersten Bildung der Echidnaniere vommen, die zweifellos mit der gleichen niere ein Umbildungsprodukt der Reptilitergibt sich, dass die Sängertischen Werdegang der Säugernier Reptilienniere ist. Den phylogeneAuswachsens der Reptilienkanälchen zu man sich als eine Folge des Läppchen der Reptilienniere wïrd zu Schleifen vorzustellen. Jedem grenzte Rindenpartie der Säugerniere entsprechei Markstrahlen bewären also auf die Interlobarräume entsprechen, die Markstrahlen Die ausführliche Publikation über der Reptilienniere zurückzuführen. über den feineren Bau der Reptilier diese Untersuchungen wie auch
Th. Boveri u. M. J. Hogue: Über die Möglichkeit, Ascaris-Eier zur Teilung in zwei gleichwertige Blastomeren zu veranlassen. (Mit 5 Figuren.)

Vorkerne oder später der Wirkung der Zentrifucalkraft so de ordnen
sich sich die ins Protoplasma Wirkung der Zentrifugalkraft, so ordnen an, und zwar sammeln sich die Dotterkë Bestandteile schichtenweise an der nach innen gerichteten Seite, währen als die leichtesten Teile

Seite von einer Menge sehr kleiner Körnchen eingenommen wird. Die Polarität, die dadurch künstlich dem Ei aufgeprägt wird, übt auf die Furchung keinen Einfluss aus. Die erste Teilungsebene kann zu der künstlichen Schichtung jeden beliebigen Winkel bilden. Bald findet man den Dotter ausschliesslich in der einen Blastomere, die feinen Granula in der anderen, bald sind beiderlei Inhaltskörper auf die beiden Zellen mehr oder weniger gleichmässig verteilt. Wie diese Verteilung auch sein mag, die weitere Entwickelung ist vollkommen normal. Stets verhält sich die eine der beiden Blastomeren in ihrer weiteren Furchung als die animale (AB), die andere als die vegetative $\left(\mathrm{P}_{1}\right)^{1}$), es tritt das charakteristische T-Stadium auf und die Embryonen entwickeln sich zu normalen Würmchen. Dabei ist besonders zu bemerken, dass bei ungleicher Verteilung der Dotterkörner auf die zwei ersten Furchungszellen zwar in der Mehrzahl der Fälle diejenige sich als die vegetative erweist, die mehr Dotter oder allen Dotter erhalten hat, dass aber auch das Umgekehrte nicht selten vorkommt.

Aus diesen Tatsachen lässt sich erstens mit Sicherheit der Schluss ziehen, dass die ins Protoplasma eingelagerten Körperchen nicht die Be deutung von organbildenden Stoffen besitzen; zweitens darf mit grosser Wahrscheinlichkeit gefolgert werden, dass das Ascaris-Ei in seinem Protoplasma eine unsichtbare Polarität und also eine "Achse" besitzt, auf welche das Zentrifugieren ohne Einfluss ist. In diese protoplasmatische Achse stellt sich die erste Furchungsspindel ein, ohne jede Rücksicht auf die durch das Zentrifugieren hervorgerufene Schichtungspolarität. So stimmen die beiden $1 / 2$-Blastomeren der zentrifugierten Eier in ihren protoplasmatischen Eigenschaften mit denen der nicht zentrifugierten überein.

Wesentlich andere Resultate erhält man, wenn man die Eier unter sehr starker Zentrifugalkraft ${ }^{2}$) sich teilen lässt. Dann findet man fast ohne Ausnahme, dass die Teilungsebene genau oder fast genau auf der künstlichen Schichtung senkrecht steht. Da, nach den oben erwähnten Versuchen, diese Schichtung für sich allein keinen Einfluss auf die Teilungsrichtung ausübt, so muss bei der Teilung des Eies unter dem Einfluss starker Zentrifugalkraft

[^0]noch ein anderes Moment wirksam sein. Und dieses Moment ist ohne Zweifel in der durch das Zentrifugieren bewirkten Abflachung der Eier gegeben. Zwar findet man die aus der Zentrifuge heraus. genommenen Eier stets kugelig. Tötet man dieselben aber während des Zentrifugierens ab, so zeigen sie sich in der Kraftrichtung stark abgeplattet.

Offenbar tritt hier das gleiche ein - und dies war auch der Grundgedanke bei der Ausführung der Experimente gewesen - was man bei einem Seeigel-Ei durch Pressen zwischen zwei Platten erzielen kann: die zur Kraftrichtung senkrechten Dimensionen werden abnorm vergrössert und die erste Furchungsspindel stellt sich, der Hertwig'schen Regel folgend, in eine dieser grössten Dimensionen ein.

Unter den so geteilten Eiern finden sich nun stets eine grössere oder geringere Anzahl, die einen bestimmten abnormen Entwickelungsgang einschlagen. Fast stets sind diese abnormen Fälle von Anfang an dadurch kenntlich, dass sich an dem Pol, der die schweren Granula enthält, während der Teilung des Eies ein kleiner Plasmaball abgeschnürt hat (Fig. 1, b).

Das Spezifische in der Entwickelung dieser Keime liegt in folgendem. Anstatt der für die normale Ascaris-Entwicklung charakteristischen T-Figur, bestehend aus zwei von der animalen Blastomere stammenden horizontalen und zwei

Fig. 1. aus der vegetativen Blastomere hervorgegangenen vertikalen Zellen, zeigt das beginnende Vierzellen-Stadium die in Fig. 2 wiedergegebene

symmetrische Gestalt: zwei in der Mitte sich berührende Zellen, die als x bezeichnet seien, zwei äussere y. Dieser Zustand geht gewöhnlich unter Einschaltung eines sehr eigentümlichen Ringstadiums (Fig. 3)
in eine Anordnung über, welche der des normalen Vierzellen-Stadiums nach der Umgruppierung "der vier Zellen \%iemlich ähnlich sieht. (Fig. 4).

Beim Übergang vom Vier- zum Achtzellenstadium tritt dagegen der fundamentale Unterschied zwischen unseren abnormen und den normalen Keimen wieder aufs klarste hervor (Fig. 5). Die beiden

Fig. 4.

Fig. 5.
xy-Gruppen verhalten sich wieder symmetrisch zueinander, vor allem insofern, als in jeder Zelle x die Diminution erfolgt, in den Zellen y nicht.

Die weitere Furchung ist variabel, das Produkt stets ein hochgradig pathologisches. Ohne auf Einzelheiten einzugehen, heben wir nur noch hervor, dass sich in bezug auf die Differenzierung von generativen und somatischen Zellen jede xy-Gruppe auch weiterhin wie ein ganzes Ei verhält, so dass in dem Gesamtkomplex anstatt der normalen zwei Urgeschlechtszellen vier vorhanden sind.

Die Abschnürung des Plasmaballes (b) bei den genannten Eiern könnte zu der Meinung Veranlassung geben, dass die Ausstossung gewisser Eibestandteile an der eigentümlichen abnormen Entwickelung die Schuld trage. Diese Annahme wird jedoch dadurch ausgeschlossen, dass einerseits der gleiche Verlauf auch manchmal an Eiern auftritt, die sich unter starker Zentrifugalwirkung geteilt hatten ohne den Ball zu bilden, sowie andererseits dadurch, dass einzelne Keime sich trotz der Abschnürung des Balles normal entwickeln.

So wird die einfachste Deutung dieser Abnormität, im Einklang mit dem aus den ersten Experimenten Gefolgerten, die sein, dass die fraglichen Eier beim Zentrifugieren so orientiert waren, dass
ihre Protoplasmaachse mit der Richtung der Zentrifugalkraft zulsammenfiel. Die Abplattung erfolgt dann in der Richtung der protoplasmatischen Achse, die Spindel, anstatt mit dieser Achse zusammenzufallen, wie im normalen Ei, wird durch die Abplattung gezwungen, sich $z u$ ihr senkrecht $z u$ stellen; und so entstehen statt der normalen verschiedenwertigen $z w e i$ protoplasmatisch äquivalente Blastomeren, die sich in gewisser Hinsicht verhalten wie zwei ganze Eier.

Wir werden auf den Gegenstand und seine theoretischen Konsequenzen ausführlicher zurückkommen.

SitZungs-Berichte
 DER
 PHYSIKALISCH-MEDICINISCHEN GESELLSCHAFT

ZU

W Ü R Z B URG.

Preis pro Jahrgang \mathscr{N}_{6} 4.- - Zu beziehen durch alle Buchhandlungen. - Einzelne Nummern werden nicht abgegeben. - Grössere Arbeiten erscheinen in den "Verhandlungen der Physikalisch-medicinischen Gesellschaft"

Curt Kabitzsch (A. Stuber's Verlag) in Würzburg.
Inhalt: Lüdke: 1. Über Milztransplantationen, S. 49; 2. Immunisierung gegen Typhus, S. 53; Reichardt: Untersuchuugen über das Gehirn (I. Teil), S. 54; Ackermann: Über die Entstehung von Fäulnisbasen, S. 61.
IX. Sitzung vom 1. Juli 1909 (im Hörs̊aal des physiologischen Instituts).

1. Das Protokoll der letzten Sitzung wird verlesen und genehmigt.
2. Herr Cantor hält den angeküudigten Vortrag: Über die neueren Anschauungen in der kinetischen Gastheorie (folgt später). Diskussion die Herren Wien, v. Frey, Zarnik, Cantor.
3. Herr Lüdke hält die angekündigten Vorträge: 1. Über Milztransplantationen. 3. Immunisierung gegen Typhus. Diskussion die Herren v. Frey, Lüdke.

H. Lüdke: 1. Über Milztransplantationen.

Den Anstoss zu Transplantationsversuchen der verschiedensten Organe gaben bekanntlich die Schilddrüsenüberpflanzungen. Meist wurden drüsige Organe mit innerer, teils auch mit äusserer Sekretion verpflegt, und die Transplantationen fanden in den Geweben desselben oder wenigstens artgleichen, seltener des artfremden Organismus statt. - Das Ergebnis aller dieser Überpflanzungsversuche lässt sich kurz wohl dahin zusammenfassen, dass die positiven Resultate einer gelungenen Einheilung nicht selten waren, dass aber befriedigende Resultate über eine dauernde Einheilung und über dauernd er-

IV. Korrespondierende Mitglieder.

Aitken, William, London.
Agassiz, Alex., Cambridge U. S. A.
Berkart, J. B., London.
von Bierhoet, Brügge.
Biff, Seraf, Mailand.
Billings, John, Washington.
Bohr, Christian, Universitäts-Professor,
Kopenhagen.
Cajal, Ramon y, Madrid.
K. H. Carl Theodor, Herzog in Bayern.

Clarus, Julius, Leipzig.
Cornaz, Ed., Nenchâtel.
Crane, C. H., Washington.
Doria, Marchese, Genua.
von Ebner, Viktor, Hofrat und Professor, Wien.
Ehrmann, Professor, Mitglied der med. Akademie, Paris.
Einthoven, W., Universitäts-Professor, Leiden.
Felici, Ric., Pisa.
Fischer, Joh. G., Hamburg.
Golgi, Camillo, Pavia.
Hammer, Arzt, St. Louis.
Hashimoto, Generaistabsarzt, Tokio. Hjelt, Otto, Ernst, Prof., Helsingfors.

Jaccoud, Professor, Sekretär der med. Akademie, Paris.
Jaccobi, Arzt, New York
Lipp, Ed., Professor, Graz.
K. H. Ludwig Ferdinand, Prinz v. Bayern. Manfred, Dr., Neapel.
Maja, Nota, Arzt, Rio de Janeiro.
Munk, Hermann, Universitäts-Professor, Berlin.
Neuburger, Max, Universitäts Professor, Wien.
Pavesi, Pietro, Genua.
Politzer, Professor, Wien.
Rabitsch, Petersburg.
Reinisch, Erlangen.
Retzius, Gustav, Professor, Stockholm. Sämisch, Professor, Bonn.
Schriifer, Lyceal-Professor, Bamberg. Scofitsch, Professor, Wien.
Senise, Tomaso, Neapel.
Simon, John, Professor, London. Simrack, Arzt, New York.
Spatz, Bernhard, Hofrat, München. Siiss, Fr. Universitäts-Professor, Wien. Toldt, C., Universitäts-Professor, Wien,

SITZUNGS-BERICHTE

DER

PHYSIK-MED. GESELLSCHAFT

ZU

WÜRZBURG.

HERAUSGEGEBEN
VON DER
REDAKTIONS-KOMMISSION DER GESELLSCHAFT:
PROF. DR. O. SCHULTZE.
PROF. DR. F. HARMS. PRIV.-DOZ. DR. A. SOMMER.

JAHRGANG 1909.

WÜRZBURG.

CURTKABITZSCH (A. STUBER's VERLAG).
1910.

[^0]: 1) Vgl. Th. Boveri, Die Entwicklung von Ascaris meg. Festschrift für C. von Kupffer. Jena, 1899.
 ${ }^{2}$) Zirka 3800 Umdrehungen in der Minute bei ungefähr 9 cm Abstand der Eier von der Rotationsachse.
