Neurobiology and Genetics

Sander Liessem

Research Interest

Locomotion needs to be adjusted to ever-changing environmental and internal demands. For example, animals need to respond to obstacles or conspecifics in their path and integrate a range of sensory information to navigate them, for instance by walking around the obstacle or waiting for the conspecific to pass. To this end, information from diverse and distinct sensory modalities, such as vision or mechanosensation, is integrated by brain circuits, and converges onto a relatively small population of descending neurons. These “output neurons” of the brain communicate with motor centers in the ventral nerve cord, where they control various behaviors, such as curve walking or stopping, an thus adapt motor programs to cope with changes in the environment. To deliver insights into fundamental principles facilitating this sensorimotor flexibility, Sander is combining various techniques such as whole-cell patch clamp recordings, optogenetics, and behavioral analysis.

After finishing his Bachelor’s thesis at the Max Planck Institute for Neurological Research, Sander pursued his postgraduate studies at the University of Cologne where he qualified for the Fast-Track Masters/Doctoral program. He earned his PhD in neurobiology in Ansgar Büschges’ and Reinhard Predel’s Labs. His thesis focused on the identification and role of neuropeptides in insect motor control.

Awards & Fundings