Zentrale Abteilung für Mikroskopie - Imaging Core Facility

Christian Stigloher

Prof. Dr. Christian Stigloher

Group Leader
Zentrale Abteilung für Mikroskopie
Am Hubland
97074 Würzburg
Germany
Gebäude: Biozentrum
Raum: DK 16
Telefon: +49 931 31-89850
Bild: Prof. Dr. Christian Stigloher

Christian Stigloher is a molecular cell biologist and electron microscopist. The main focus of his research have been neurons, from early development as progenitor cells to the final differentiated state with functional synapses. He studied biology at the University of Würzburg and Duke University, North Carolina, USA. Christian’s doctoral thesis project in the laboratory of Laure Bally-Cuif at the Helmholtz Center Munich and the Technical University Munich was focused on the molecular biology and cellular behavior of neural progenitor cells using zebrafish as model organism. He then went as postdoctoral fellow to Jean-Louis Bessereau’s laboratory at the Ecole Normale Superieure in Paris, France, where he changed topic and focused on to the nervous system of the nematode C. elegans as model for molecular and ultrastructural analysis of synaptic architecture and function. Since 2012 Christian Stigloher is Juniorprofessor and since 2017 Professor for Microscopy at the Biocenter of the Julius-Maximilians-University Würzburg.

Christian is particularly interested in understanding the dynamic behavior and architecture of cells and to combine this information with the molecular factors at play. He used zebrafish as model to unravel molecular components of an early patterning process in the nervous system that separates the eye field from the telencephalic progenitor pool. Vertebrate brains crucially rely on neural progenitor pools as source of undifferentiated and proliferating cells during development and partly also throughout life-time. He then focused on the molecular processes regulating the neural progenitor pool at the midbrain-hindbrain boundary (MHB) where he participated in a project that discovered a novel microRNA mediated process that regulates the MHB progenitor pool. As postdoc he then went on to use the small nematode C. elegans as model organism to study structure and function of chemical synapses, fine structured cellular junctions that allow communication between neurons themselves and neurons and muscle cells. As postdoctoral-fellow he learned to apply advanced electron microscopy techniques such as high pressure freezing and established electron tomography as tool to study synaptic architecture at the nanoscale in 3D. A special interest of his research is to combine microscopy techniques in a so called correlated light and electron microscopy (CLEM) approach. Thereby one can profit from the advantages of both techniques, allowing access to ultrastructural information with the knowledge of the localization of molecular factors.

2024[ to top ]
  • Erbacher, C., Britz, S., Dinkel, P., Klein, T., Sauer, M., Stigloher, C., and Üçeyler, N. (2024) Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit, eLife, 13, e77761, available: https://doi.org/10.7554/eLife.77761.
2023[ to top ]
  • Fazeli, G., Levin-Konigsberg, R., Bassik, M.C., Stigloher, C., and Wehman, A.M. (2023) A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes, Current Biology, 33(4), 607–621.e7, available: https://doi.org/https://doi.org/10.1016/j.cub.2022.12.041.
  • Andreska, T., Lüningschrör, P., Wolf, D., McFleder, R.L., Ayon-Olivas, M., Rattka, M., Drechsler, C., Perschin, V., Blum, R., Aufmkolk, S., Granado, N., Moratalla, R., Sauer, M., Monoranu, C., Volkmann, J., Ip, C.W., Stigloher, C., and Sendtner, M. (2023) DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons, Cell Reports, 42(6), 112575, available: https://doi.org/https://doi.org/10.1016/j.celrep.2023.112575.
2022[ to top ]
  • Lichter, K., Paul, M.M., Pauli, M., Schoch, S., Kollmannsberger, P., Stigloher, C., Heckmann, M., and Sirén, A.-L. (2022) Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse, Cell Reports, 40(12), available: https://doi.org/10.1016/j.celrep.2022.111382.
2021[ to top ]
  • Britz, S., Markert, S.M., Witvliet, D., Steyer, A.M., Tröger, S., Mulcahy, B., Kollmannsberger, P., Schwab, Y., Zhen, M., and Stigloher, C. (2021) Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy, Frontiers in Neuroanatomy, 15, 80, available: https://doi.org/10.3389/fnana.2021.732520.
2020[ to top ]
  • Markert, S.M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., Sendtner, M., and Stigloher, C. (2020) Overexpression of an {ALS}-associated {FUS} mutation in C. elegans disrupts {NMJ} morphology and leads to defective neuromuscular transmission, Biology Open, 9(12), bio055129, available: https://doi.org/10.1242/bio.055129.
  • Strobel, M., Helmprobst, F., Pauli, M., Heckmann, M., Lillesaar, C., and Stigloher, C. (2020) Advancing Array Tomography to Study the Fine Ultrastructure of Identified Neurons in Zebrafish (Danio rerio), Springer Protocols, Neuromethods(155), 59–78, available: https://link.springer.com/protocol/10.1007%2F978-1-0716-0691-9_4.
2017[ to top ]
  • Helmprobst, F., Lillesaar, C., and Stigloher, C. (2017) Expression of sept3, sept5a and sept5b in the Developing and Adult Nervous System of the Zebrafish (Danio rerio), Frontiers in Neuroanatomy, 11, available: https://doi.org/10.3389/fnana.2017.00006.
  • Kaltdorf, K.V., Schulze, K., Helmprobst, F., Kollmannsberger, P., Dandekar, T., and Stigloher, C. (2017) FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms, PLOS Computational Biology, 13(1), 1–21, available: https://doi.org/10.1371/journal.pcbi.1005317.
  • Markert, S.M., Bauer, V., Muenz, T.S., Jones, N.G., Helmprobst, F., Britz, S., Sauer, M., Rössler, W., Engstler, M., and Stigloher, C. (2017) Chapter 2 - 3D subcellular localization with superresolution array tomography on ultrathin sections of various species, in Müller-Reichert, T. and Verkade, P., eds., Correlative Light and Electron Microscopy III, Methods in Cell Biology, Academic Press, 21–47, available: https://doi.org/https://doi.org/10.1016/bs.mcb.2017.03.004.
2016[ to top ]
  • Markert, S.M., Britz, S., Proppert, S., Lang, M., Witvliet, D., Mulcahy, B., Sauer, M., Zhen, M., Bessereau, J.-L., and Stigloher, C. (2016) Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome, Neurophotonics, 3(4), 041802, available: https://doi.org/10.1117/1.nph.3.4.041802.
2015[ to top ]
  • Helmprobst, F., Frank, M., and Stigloher, C. (2015) Presynaptic architecture of the larval zebrafish neuromuscular junction, Journal of Comparative Neurology, 523(13), 1984–1997, available: https://doi.org/10.1002/cne.23775.
2011[ to top ]
  • Stigloher, C., Zhan, H., Zhen, M., Richmond, J., and Bessereau, J.-L. (2011) The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions, Journal of Neuroscience, 31(12), 4388–4396, available: https://doi.org/10.1523/JNEUROSCI.6164-10.2011.
2008[ to top ]
  • Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., and Bally-Cuif, L. (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary, Nature Neuroscience, 11, 641-, available: https://doi.org/10.1038/nn.2115.
2006[ to top ]
  • Stigloher, C., Ninkovic, J., Laplante, M., Geling, A., Tannh{\"a}user, B., Topp, S., Kikuta, H., Becker, T.S., Houart, C., and Bally-Cuif, L. (2006) Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3, Development, 133(15), 2925–2935, available: https://doi.org/10.1242/dev.02450.

2024[ to top ]
  • Erbacher, C., Britz, S., Dinkel, P., Klein, T., Sauer, M., Stigloher, C., and Üçeyler, N. (2024) Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit, eLife, 13, e77761, available: https://doi.org/10.7554/eLife.77761.
2023[ to top ]
  • Fazeli, G., Levin-Konigsberg, R., Bassik, M.C., Stigloher, C., and Wehman, A.M. (2023) A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes, Current Biology, 33(4), 607–621.e7, available: https://doi.org/https://doi.org/10.1016/j.cub.2022.12.041.
  • Andreska, T., Lüningschrör, P., Wolf, D., McFleder, R.L., Ayon-Olivas, M., Rattka, M., Drechsler, C., Perschin, V., Blum, R., Aufmkolk, S., Granado, N., Moratalla, R., Sauer, M., Monoranu, C., Volkmann, J., Ip, C.W., Stigloher, C., and Sendtner, M. (2023) DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons, Cell Reports, 42(6), 112575, available: https://doi.org/https://doi.org/10.1016/j.celrep.2023.112575.
2022[ to top ]
  • Englert, M., Aurbach, K., Becker, I.C., Gerber, A., Heib, T., Wackerbarth, L.M., Kusch, C., Mott, K., Araujo, G.H.M., Baig, A.A., Dütting, S., Knaus, U.G., Stigloher, C., Schulze, H., Nieswandt, B., Pleines, I., and Nagy, Z. (2022) Impaired microtubule dynamics contribute to microthrombocytopenia in {RhoB}-deficient mice, Blood Advances, 6(17), 5184–5197, available: https://doi.org/10.1182/bloodadvances.2021006545.
  • Lichter, K., Paul, M.M., Pauli, M., Schoch, S., Kollmannsberger, P., Stigloher, C., Heckmann, M., and Sirén, A.-L. (2022) Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse, Cell Reports, 40(12), available: https://doi.org/10.1016/j.celrep.2022.111382.
  • Eder, S., Hollmann, C., Mandasari, P., Wittmann, P., Schumacher, F., Kleuser, B., Fink, J., Seibel, J., Schneider-Schaulies, J., Stigloher, C., Beyersdorf, N., and Dembski, S. (2022) Synthesis and Characterization of Ceramide-Containing Liposomes as Membrane Models for Different T Cell Subpopulations, Journal of Functional Biomaterials, 13(3), 111, available: https://doi.org/10.3390/jfb13030111.
  • Freund, M., Graus, D., Fleischmann, A., Gilbert, K.J., Lin, Q., Renner, T., Stigloher, C., Albert, V.A., Hedrich, R., and Fukushima, K. (2022) The digestive systems of carnivorous plants, Plant Physiology, 190(1), 44–59, available: https://doi.org/10.1093/plphys/kiac232.
  • Lahree, A., de Jesus Santos Baptista, S., Marques, S., Perschin, V., Zuzarte-Luís, V., Goel, M., Choudhary, H.H., Mishra, S., Stigloher, C., Zerial, M., Sundaramurthy, V., and Mota, M.M. (2022) Active APPL1 sequestration by Plasmodium favors liver-stage development, Cell Reports, 39(9), 110886, available: https://doi.org/https://doi.org/10.1016/j.celrep.2022.110886.
  • Bazihizina, N., Böhm, J., Messerer, M., Stigloher, C., Müller, H.M., Cuin, T.A., Maierhofer, T., Cabot, J., Mayer, K.F.X., Fella, C., Huang, S., Al-Rasheid, K.A.S., Alquraishi, S., Breadmore, M., Mancuso, S., Shabala, S., Ache, P., Zhang, H., Zhu, J.-K., Hedrich, R., and Scherzer, S. (2022) Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa, New Phytologist, 235(5), 1822–1835, available: https://doi.org/https://doi.org/10.1111/nph.18205.
  • Endres, L.M., Jungblut, M., Divyapicigil, M., Sauer, M., Stigloher, C., Christodoulides, M., Kim, B.J., and Schubert-Unkmeir, A. (2022) Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection, Fluids and Barriers of the CNS, 19(1), 81-, available: https://doi.org/10.1186/s12987-022-00379-z.
  • Njume, F.N., Razzauti, A., Soler, M., Perschin, V., Fazeli, G., Bourez, A., Delporte, C., Ghogomu, S.M., Poelvoorde, P., Pichard, S., Birck, C., Poterszman, A., Souopgui, J., {Van Antwerpen}, P., Stigloher, C., Vanhamme, L., and Laurent, P. (2022) A lipid transfer protein ensures nematode cuticular impermeability, iScience, 25(11), 105357, available: https://doi.org/https://doi.org/10.1016/j.isci.2022.105357.
  • Zambusi, A., Novoselc, K.T., Hutten, S., Kalpazidou, S., Koupourtidou, C., Schieweck, R., Aschenbroich, S., Silva, L., Yazgili, A.S., van Bebber, F., Schmid, B., Möller, G., Tritscher, C., Stigloher, C., Delbridge, C., Sirko, S., Günes, Z.I., Liebscher, S., Schlegel, J., Aliee, H., Theis, F., Meiners, S., Kiebler, M., Dormann, D., and Ninkovic, J. (2022) TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury, Nature Neuroscience, available: https://doi.org/10.1038/s41593-022-01199-y.
2021[ to top ]
  • Jahn, M.T., Lachnit, T., Markert, S.M., Stigloher, C., Pita, L., Ribes, M., Dutilh, B.E., and Hentschel, U. (2021) Lifestyle of sponge symbiont phages by host prediction and correlative microscopy, The ISME Journal, available: https://doi.org/10.1038/s41396-021-00900-6.
  • Hofmann, J., Ginex, T., Espargaró, A., Scheiner, M., Gunesch, S., Aragó, M., Stigloher, C., Sabaté, R., Luque, F.J., and Decker, M. (2021) Azobioisosteres of Curcumin with Pronounced Activity against Amyloid Aggregation, Intracellular Oxidative Stress, and Neuroinflammation, Chemistry – A European Journal, 27(19), 6015–6027, available: https://doi.org/https://doi.org/10.1002/chem.202005263.
  • Britz, S., Markert, S.M., Witvliet, D., Steyer, A.M., Tröger, S., Mulcahy, B., Kollmannsberger, P., Schwab, Y., Zhen, M., and Stigloher, C. (2021) Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy, Frontiers in Neuroanatomy, 15, 80, available: https://doi.org/10.3389/fnana.2021.732520.
  • Heib, T., Hermanns, H.M., Manukjan, G., Englert, M., Kusch, C., Becker, I.C., Gerber, A., Wackerbarth, L.M., Burkard, P., Dandekar, T., Balkenhol, J., Jahn, D., Beck, S., Meub, M., Dütting, S., Stigloher, C., Sauer, M., Cherpokova, D., Schulze, H., Brakebusch, C., Nieswandt, B., Nagy, Z., and Pleines, I. (2021) RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes, Cell Reports, 35(6), 109102, available: https://doi.org/https://doi.org/10.1016/j.celrep.2021.109102.
  • Peters, S., Kaiser, L., Fink, J., Schumacher, F., Perschin, V., Schlegel, J., Sauer, M., Stigloher, C., Kleuser, B., Seibel, J., and Schubert-Unkmeir, A. (2021) Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria, Scientific Reports, 11(1), 4300-, available: https://doi.org/10.1038/s41598-021-83813-w.
2020[ to top ]
  • Markert, S.M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., Sendtner, M., and Stigloher, C. (2020) Overexpression of an {ALS}-associated {FUS} mutation in C. elegans disrupts {NMJ} morphology and leads to defective neuromuscular transmission, Biology Open, 9(12), bio055129, available: https://doi.org/10.1242/bio.055129.
  • Strobel, M., Helmprobst, F., Pauli, M., Heckmann, M., Lillesaar, C., and Stigloher, C. (2020) Advancing Array Tomography to Study the Fine Ultrastructure of Identified Neurons in Zebrafish (Danio rerio), Springer Protocols, Neuromethods(155), 59–78, available: https://link.springer.com/protocol/10.1007%2F978-1-0716-0691-9_4.
  • Wen, H., Eckenstein, K., Weihrauch, V., Stigloher, C., and Brehm, P. (2020) Primary and secondary motoneurons use different calcium channel types to control escape and swimming behaviors in zebrafish, Proceedings of the National Academy of Sciences, 117(42), 26429–26437, available: https://doi.org/10.1073/pnas.2015866117.
  • Kramer, S., Meyer-Natus, E., Stigloher, C., Thoma, H., Schnaufer, A., and Engstler, M. (2020) Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples, Nucleic Acids Research, 49(3), e14, available: https://doi.org/doi.org/10.1093/nar/gkaa1142.
  • Grob, R., Tritscher, C., Grübel, K., Stigloher, C., Groh, C., Fleischmann, P.N., and Rössler, W. (2020) Johnston’s organ and its central projections in Cataglyphis desert ants, Journal of Comparative Neurology, n/a(n/a), available: https://doi.org/https://doi.org/10.1002/cne.25077.
  • Osman, M., Stigloher, C., Mueller, M., and Waller, F. (2020) An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica, Plant Methods, 16(39), available: https://doi.org/10.1186/s13007-020-00584-7.
2019[ to top ]
  • Scholz, N., Ehmann, N., Sachidanandan, D., Imig, C., Cooper, B.H., Jahn, O., Reim, K., Brose, N., Meyer, J., Lamberty, M., Altrichter, S., Bormann, A., Hallermann, S., Pauli, M., Heckmann, M., Stigloher, C., Langenhan, T., and Kittel, R.J. (2019) Complexin cooperates with Bruchpilot to tether synaptic vesicles to the active zone cytomatrix, J Cell Biol, 218(3), 1011–1026, available: https://doi.org/10.1083/jcb.201806155.
  • Spindler, M.-C., Filbeck, S., Stigloher, C., and Benavente, R. (2019) Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography, Scientific Reports, 9(1), 16102-, available: https://doi.org/10.1038/s41598-019-52455-4.
  • Jahn, M.T., Arkhipova, K., Markert, S.M., Stigloher, C., Lachnit, T., Pita, L., Kupczok, A., Ribes, M., Stengel, S.T., Rosenstiel, P., Dutilh, B.E., and Hentschel, U. (2019) A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion, Cell Host & Microbe, 26(4), 542–550.e5, available: https://doi.org/https://doi.org/10.1016/j.chom.2019.08.019.
  • Spindler, M.-C., Redolfi, J., Helmprobst, F., Kollmannsberger, P., Stigloher, C., and Benavente, R. (2019) Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules, Communications Biology, 2(1), 376-, available: https://doi.org/10.1038/s42003-019-0621-1.
2018[ to top ]
  • Spindler, M.-C., Helmprobst, F., Stigloher, C., and Benavente, R. (2018) EM Tomography of Meiotic LINC Complexes, in Gundersen, G.G. and Worman, H.J., eds., The LINC Complex: Methods and Protocols, New York, NY: Springer New York, 3–15, available: https://doi.org/10.1007/978-1-4939-8691-0_1.
  • Link, J., Paouneskou, D., Velkova, M., Daryabeigi, A., Laos, T., Labella, S., Barroso, C., Piñol, S.P., Montoya, A., Kramer, H., Woglar, A., Baudrimont, A., Markert, S.M., Stigloher, C., Martinez-Perez, E., Dammermann, A., Alsheimer, M., Zetka, M., and Jantsch, V. (2018) Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase, Developmental Cell, 45(2), 212 – 225.e7, available: https://doi.org/https://doi.org/10.1016/j.devcel.2018.03.018.
  • Böhm, J., Messerer, M., Müller, H.M., Scholz-Starke, J., Gradogna, A., Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C., Ache, P., Al-Rasheid, K.A., Mayer, K.F., Shabala, S., Carpaneto, A., Haberer, G., Zhu, J.-K., and Hedrich, R. (2018) Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa, Current Biology, 28(19), 3075 – 3085.e7, available: https://doi.org/https://doi.org/10.1016/j.cub.2018.08.004.
  • Segerer, G., Engelmann, D., Kaestner, A., Trötzmüller, M., Köfeler, H., Stigloher, C., Thiele, C., Jeanclos, E., and Gohla, A. (2018) A phosphoglycolate phosphatase/AUM-dependent link between triacylglycerol turnover and epidermal growth factor signaling, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1863(6), 584–594, available: https://doi.org/https://doi.org/10.1016/j.bbalip.2018.03.002.
  • D’Alessandro, M., Richard, M., Stigloher, C., Vincent, G., Boulin, T., Richmond, J.E., and Bessereau, J.-L. (2018) CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors, eLife, 7(e39649), available: https://doi.org/10.7554/eLife.39649.
  • Beer, K.B., Rivas-Castillo, J., Kuhn, K., Fazeli, G., Karmann, B., Nance, J.F., Stigloher, C., and Wehman, A.M. (2018) Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry, Proceedings of the National Academy of Sciences, 115(6), E1127-E1136, available: https://doi.org/10.1073/pnas.1714085115.
  • Kaltdorf, K.V., Theiss, M., Markert, S.M., Zhen, M., Dandekar, T., Stigloher, C., and Kollmannsberger, P. (2018) Automated classification of synaptic vesicles in electron tomograms of C. elegans using machine learning, PLOS ONE, 13(10), 1–22, available: https://doi.org/10.1371/journal.pone.0205348.
2017[ to top ]
  • Helmprobst, F., Lillesaar, C., and Stigloher, C. (2017) Expression of sept3, sept5a and sept5b in the Developing and Adult Nervous System of the Zebrafish (Danio rerio), Frontiers in Neuroanatomy, 11, available: https://doi.org/10.3389/fnana.2017.00006.
  • Kaltdorf, K.V., Schulze, K., Helmprobst, F., Kollmannsberger, P., Dandekar, T., and Stigloher, C. (2017) FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms, PLOS Computational Biology, 13(1), 1–21, available: https://doi.org/10.1371/journal.pcbi.1005317.
  • Berger, C., Helmprobst, F., Chapouton, P., Lillesaar, C., and Stigloher, C. (2017) sept8a and sept8b mRNA expression in the developing and adult zebrafish, Gene Expression Patterns, 25-26, 8–21, available: https://doi.org/https://doi.org/10.1016/j.gep.2017.04.002.
  • García-Fernández, E., Koch, G., Wagner, R.M., Fekete, A., Stengel, S.T., Schneider, J., Mielich-Süss, B., Geibel, S., Markert, S.M., Stigloher, C., and Lopez, D. (2017) Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance, Cell, 171(6), 1354 – 1367.e20, available: https://doi.org/https://doi.org/10.1016/j.cell.2017.10.012.
  • Markert, S.M., Bauer, V., Muenz, T.S., Jones, N.G., Helmprobst, F., Britz, S., Sauer, M., Rössler, W., Engstler, M., and Stigloher, C. (2017) Chapter 2 - 3D subcellular localization with superresolution array tomography on ultrathin sections of various species, in Müller-Reichert, T. and Verkade, P., eds., Correlative Light and Electron Microscopy III, Methods in Cell Biology, Academic Press, 21–47, available: https://doi.org/https://doi.org/10.1016/bs.mcb.2017.03.004.
  • Schieber, N.L., Machado, P., Markert, S.M., Stigloher, C., Schwab, Y., and Steyer, A.M. (2017) Chapter 4 - Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging, in Müller-Reichert, T. and Verkade, P., eds., Correlative Light and Electron Microscopy III, Methods in Cell Biology, Academic Press, 69–83, available: https://doi.org/https://doi.org/10.1016/bs.mcb.2017.03.005.
2016[ to top ]
  • Jahn, M.T., Markert, S.M., Ryu, T., Ravasi, T., Stigloher, C., Hentschel, U., and Moitinho-Silva, L. (2016) Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling, Scientific Reports, 6, 35860-, available: https://doi.org/10.1038/srep35860.
  • Markert, S.M., Britz, S., Proppert, S., Lang, M., Witvliet, D., Mulcahy, B., Sauer, M., Zhen, M., Bessereau, J.-L., and Stigloher, C. (2016) Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome, Neurophotonics, 3(4), 041802, available: https://doi.org/10.1117/1.nph.3.4.041802.
  • Kupper, M., Stigloher, C., Feldhaar, H., and Gross, R. (2016) Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus, Arthropod Structure & Development, 45(5), 475–487, available: https://doi.org/https://doi.org/10.1016/j.asd.2016.09.004.
2015[ to top ]
  • Helmprobst, F., Frank, M., and Stigloher, C. (2015) Presynaptic architecture of the larval zebrafish neuromuscular junction, Journal of Comparative Neurology, 523(13), 1984–1997, available: https://doi.org/10.1002/cne.23775.
  • Frank, B., Marcu, A., Petersen, A.L. de O.A., Weber, H., Stigloher, C., Mottram, J.C., Scholz, C.J., and Schurigt, U. (2015) Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210, Parasites & Vectors, 8:404, available: https://doi.org/10.1186/s13071-015-0974-3.
2014[ to top ]
  • Pinan-Lucarré, B., Tu, H., Pierron, M., Cruceyra, P.I., Zhan, H., Stigloher, C., Richmond, J.E., and Bessereau, J.-L. (2014) C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains, Nature, 511, 466–470, available: https://doi.org/10.1038/nature13313.
  • Zhan, H., Stanciauskas, R., Stigloher, C., Dizon, K.K., Jospin, M., Bessereau, J.-L., and Pinaud, F. (2014) In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans, Nature Communications, 5, 4974-, available: https://doi.org/10.1038/ncomms5974.
  • Różycka, M., Wojtas, M., Jakób, M., Stigloher, C., Grzeszkowiak, M., Mazur, M., and Ożyhar, A. (2014) Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals, PLOS ONE, 9(12), 1–36, available: https://doi.org/10.1371/journal.pone.0114308.
2013[ to top ]
  • Hung, W.L., Hwang, C., Gao, S., Liao, E.H., Chitturi, J., Wang, Y., Li, H., Stigloher, C., Bessereau, J.-L., and Zhen, M. (2013) Attenuation of insulin signalling contributes to {FSN}-1-mediated regulation of synapse development, The {EMBO} Journal, 32(12), 1745–1760, available: https://doi.org/10.1038/emboj.2013.91.
2012[ to top ]
  • Boulin, T., Rapti, G., Briseño-Roa, L., Stigloher, C., Richmond, J.E., Paoletti, P., and Bessereau, J.-L. (2012) Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit, Nature Neuroscience, 15, 1374-, available: https://doi.org/10.1038/nn.3197.
2011[ to top ]
  • Stigloher, C., Zhan, H., Zhen, M., Richmond, J., and Bessereau, J.-L. (2011) The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions, Journal of Neuroscience, 31(12), 4388–4396, available: https://doi.org/10.1523/JNEUROSCI.6164-10.2011.
  • Webb, K.J., Coolen, M., Gloeckner, C.J., Stigloher, C., Bahn, B., Topp, S., Ueffing, M., and Bally-Cuif, L. (2011) The Enhancer of split transcription factor Her8a is a novel dimerisation partner for Her3 that controls anterior hindbrain neurogenesis in zebrafish, BMC Developmental Biology, 11:27, available: https://doi.org/10.1186/1471-213X-11-27.
  • Chapouton, P., Webb, K.J., Stigloher, C., Alunni, A., Adolf, B., Hesl, B., Topp, S., Kremmer, E., and Bally-Cuif, L. (2011) Expression of Hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain, Journal of Comparative Neurology, 519(9), 1748–1769, available: https://doi.org/10.1002/cne.22599.
2009[ to top ]
  • Lillesaar, C., Stigloher, C., Tannhäuser, B., Wullimann, M.F., and Bally-Cuif, L. (2009) Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression, Journal of Comparative Neurology, 512(2), 158–182, available: https://doi.org/10.1002/cne.21887.
2008[ to top ]
  • S{\"o}ker, T., Dalke, C., Puk, O., Floss, T., Becker, L., Bolle, I., Favor, J., Hans, W., H{\"o}lter, S.M., Horsch, M., Kallnik, M., Kling, E., Moerth, C., Schrewe, A., Stigloher, C., Topp, S., Gailus-Durner, V., Naton, B., Beckers, J., Fuchs, H., Ivandic, B., Klopstock, T., Schulz, H., Wolf, E., Wurst, W., Bally-Cuif, L., de Angelis, M.H., and Graw, J. (2008) Pleiotropic effects in Eya3knockout mice, BMC Developmental Biology, 8(1), 118, available: https://doi.org/10.1186/1471-213X-8-118.
  • Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., and Bally-Cuif, L. (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary, Nature Neuroscience, 11, 641-, available: https://doi.org/10.1038/nn.2115.
  • Komisarczuk, A.Z., Topp, S., Stigloher, C., Kapsimali, M., Bally-Cuif, L., and Becker, T.S. (2008) Enhancer detection and developmental expression of zebrafish sprouty1, a member of the fgf8 synexpression group, Developmental Dynamics, 237(9), 2594–2603, available: https://doi.org/10.1002/dvdy.21689.
  • Ninkovic, J., Stigloher, C., Lillesaar, C., and Bally-Cuif, L. (2008) Gsk3β/PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity, Development, 135(18), 3137–3148, available: https://doi.org/10.1242/dev.020479.
  • Stigloher, C., Chapouton, P., Adolf, B., and Bally-Cuif, L. (2008) Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain, Brain Research Bulletin, 75(2), 266–273, available: https://doi.org/https://doi.org/10.1016/j.brainresbull.2007.10.032.
  • Topp, S., Stigloher, C., Komisarczuk, A.Z., Adolf, B., Becker, T.S., and Bally-Cuif, L. (2008) Fgf signaling in the zebrafish adult brain: Association of Fgf activity with ventricular zones but not cell proliferation, Journal of Comparative Neurology, 510(4), 422–439, available: https://doi.org/10.1002/cne.21802.
2007[ to top ]
  • Lillesaar, C., Tannhäuser, B., Stigloher, C., Kremmer, E., and Bally-Cuif, L. (2007) The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system, Developmental Dynamics, 236(4), 1072–1084, available: https://doi.org/10.1002/dvdy.21095.
2006[ to top ]
  • Stigloher, C., Ninkovic, J., Laplante, M., Geling, A., Tannh{\"a}user, B., Topp, S., Kikuta, H., Becker, T.S., Houart, C., and Bally-Cuif, L. (2006) Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3, Development, 133(15), 2925–2935, available: https://doi.org/10.1242/dev.02450.