Publikationen
Publikationen Dr. Ines Kreuzer
- [ 2023 ]
- [ 2022 ]
- [ 2020 ]
- [ 2017 ]
- [ 2016 ]
- [ 2015 ]
- [ 2014 ]
- [ 2013 ]
- [ 2012 ]
- [ 2006 ]
- [ 2005 ]
- [ 2003 ]
- [ 1999 ]
2023[ to top ]
-
(2023) „Demystifying the Venus flytrap action potential“, New Phytologist, 239(6), 2108–2112, verfügbar unter: https://doi.org/10.1111/nph.19113.
-
(2023) „DYSCALCULIA, a Venus flytrap mutant without the ability to count action potentials“, Current Biology, 33(3), 589–596.e5, verfügbar unter: https://doi.org/10.1016/j.cub.2022.12.058.
2022[ to top ]
-
(2022) „A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves“, Current Biology, 32(19), 4255–4263.e5, verfügbar unter: https://doi.org/10.1016/j.cub.2022.08.051.
-
(2022) „Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap“, Scientific Reports, 12(1), 2851, verfügbar unter: https://doi.org/10.1038/s41598-022-06915-z.
2020[ to top ]
-
(2020) „The Venus flytrap trigger hair–specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling“, PLOS Biology, 18(12), 1–29, verfügbar unter: https://doi.org/10.1371/journal.pbio.3000964.
-
(2020) „Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory“, 30(12), 2312–2320.e5, verfügbar unter: https://doi.org/10.1016/j.cub.2020.04.051.
2017[ to top ]
-
(2017) „Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells“, Proc Natl Acad Sci U S A, 114(18), 4822–4827, verfügbar unter: https://doi.org/10.1073/pnas.1701860114.
-
(2017) „The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration“, New Phytol, 214(2), 597–606, verfügbar unter: https://doi.org/10.1111/nph.14404.
2016[ to top ]
-
(2016) „Venus flytrap carnivorous lifestyle builds on herbivore defense strategies“, Genome Res, 26(6), 812–25, verfügbar unter: https://doi.org/10.1101/gr.202200.115.
-
(2016) „The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake“, Curr Biol, 26(3), 286–95, verfügbar unter: https://doi.org/10.1016/j.cub.2015.11.057.
2015[ to top ]
-
(2015) „Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula“, New Phytol, 205(3), 1320–9, verfügbar unter: https://doi.org/10.1111/nph.13120.
-
(2015) „The Venus flytrap attracts insects by the release of volatile organic compounds“, J Exp Bot, 66(11), 3429, verfügbar unter: https://doi.org/10.1093/jxb/erv242.
-
(2015) „Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps“, Proc Natl Acad Sci U S A, 112(23), 7309–14, verfügbar unter: https://doi.org/10.1073/pnas.1507810112.
-
(2015) „Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure“, Curr Biol, 25(7), 928–35, verfügbar unter: https://doi.org/10.1016/j.cub.2015.01.067.
2014[ to top ]
-
(2014) „The Venus flytrap attracts insects by the release of volatile organic compounds“, J Exp Bot, 65(2), 755–66, verfügbar unter: https://doi.org/10.1093/jxb/ert455.
-
(2014) „Secreted major Venus flytrap chitinase enables digestion of Arthropod prey“, Biochim Biophys Acta, 1844(2), 374–83, verfügbar unter: https://doi.org/10.1016/j.bbapap.2013.11.009.
2013[ to top ]
-
(2013) „The Dionaea muscipula ammonium channel DmAMT1 provides NH(4)(+) uptake associated with Venus flytrap’s prey digestion“, Curr Biol, 23(17), 1649–57, verfügbar unter: https://doi.org/10.1016/j.cub.2013.07.028.
-
(2013) „Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3“, Proc Natl Acad Sci U S A, 110(20), 8296–301, verfügbar unter: https://doi.org/10.1073/pnas.1211667110.
2012[ to top ]
-
(2012) „Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues“, Plant Methods, 8(1), 28, verfügbar unter: https://doi.org/10.1186/1746-4811-8-28.
-
(2012) „The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms“, Mol Cell Proteomics, 11(11), 1306–19, verfügbar unter: https://doi.org/10.1074/mcp.M112.021006.
2006[ to top ]
-
(2006) „Ion channels meet auxin action“, Plant Biol (Stuttg), 8(3), 353–9, verfügbar unter: https://doi.org/10.1055/s-2006-924121.
2005[ to top ]
-
(2005) „Rice K+ uptake channel OsAKT1 is sensitive to salt stress“, Planta, 221(2), 212–21, verfügbar unter: https://doi.org/10.1007/s00425-004-1437-9.
2003[ to top ]
-
(2003) „Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile“, Proc Natl Acad Sci U S A, 100(20), 11795–800, verfügbar unter: https://doi.org/10.1073/pnas.2032704100.
-
(2003) „The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays“, J Biol Chem, 278(19), 16973–81, verfügbar unter: https://doi.org/10.1074/jbc.M212720200.
1999[ to top ]
-
(1999) „Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism“, Proc Natl Acad Sci U S A, 96(21), 12186–91, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/10518597.




