piwik-script

Deutsch
Department of Botany I - Plant-Physiology and Biophysics

Publications

Publications Dr. Ines Kreuzer

2020[ to top ]
  • Iosip, A. L., Böhm, J., Scherzer, S., Al-Rasheid, K. A. S., Dreyer, I., Schultz, J., Becker, D., Kreuzer, I., & Hedrich, R. The Venus flytrap trigger hair–specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLOS Biology, 18(12), 1-29. https://doi.org/10.1371/journal.pbio.3000964
  • Palfalvi, G., Hackl, T., Terhoeven, N., Shibata, T. F., Nishiyama, T., Ankenbrand, M., Becker, D., Förster, F., Freund, M., Iosip, A., Kreuzer, I., Saul, F., Kamida, C., Fukushima, K., Shigenobu, S., Tamada, Y., Adamec, L., Hoshi, Y., Ueda, K., Winkelmann, T., Fuchs, J., Schubert, I., Schwacke, R., Al-Rasheid, K., Schultz, J., Hasebe, M., & Hedrich, R. Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory (No. 12). 30(12), 2312-2320.e5. https://doi.org/10.1016/j.cub.2020.04.051
2017[ to top ]
  • Scherzer, S., Shabala, L., Hedrich, B., Fromm, J., Bauer, H., Munz, E., Jakob, P., Al-Rascheid, K. A. S., Kreuzer, I., Becker, D., Eiblmeier, M., Rennenberg, H., Shabala, S., Bennett, M., Neher, E., & Hedrich, R. Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc Natl Acad Sci U S A, 114(18), 4822-4827. https://doi.org/10.1073/pnas.1701860114
  • Fasbender, L., Maurer, D., Kreuzwieser, J., Kreuzer, I., Schulze, W. X., Kruse, J., Becker, D., Alfarraj, S., Hedrich, R., Werner, C., & Rennenberg, H. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytol, 214(2), 597-606. https://doi.org/10.1111/nph.14404
2016[ to top ]
  • Bohm, J., Scherzer, S., Krol, E., Kreuzer, I., von Meyer, K., Lorey, C., Mueller, T. D., Shabala, L., Monte, I., Solano, R., Al-Rasheid, K. A., Rennenberg, H., Shabala, S., Neher, E., & Hedrich, R. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Curr Biol, 26(3), 286-95. https://doi.org/10.1016/j.cub.2015.11.057
  • Bemm, F., Becker, D., Larisch, C., Kreuzer, I., Escalante-Perez, M., Schulze, W. X., Ankenbrand, M., Van de Weyer, A. L., Krol, E., Al-Rasheid, K. A., Mithofer, A., Weber, A. P., Schultz, J., & Hedrich, R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res, 26(6), 812-25. https://doi.org/10.1101/gr.202200.115
2015[ to top ]
  • Lind, C., Dreyer, I., Lopez-Sanjurjo, E. J., von Meyer, K., Ishizaki, K., Kohchi, T., Lang, D., Zhao, Y., Kreuzer, I., Al-Rasheid, K. A., Ronne, H., Reski, R., Zhu, J. K., Geiger, D., & Hedrich, R. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol, 25(7), 928-35. https://doi.org/10.1016/j.cub.2015.01.067
  • Gao, P., Loeffler, T. S., Honsel, A., Kruse, J., Krol, E., Scherzer, S., Kreuzer, I., Bemm, F., Buegger, F., Burzlaff, T., Hedrich, R., & Rennenberg, H. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula. New Phytol, 205(3), 1320-9. https://doi.org/10.1111/nph.13120
  • Scherzer, S., Bohm, J., Krol, E., Shabala, L., Kreuzer, I., Larisch, C., Bemm, F., Al-Rasheid, K. A., Shabala, S., Rennenberg, H., Neher, E., & Hedrich, R. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc Natl Acad Sci U S A, 112(23), 7309-14. https://doi.org/10.1073/pnas.1507810112
  • Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A., Alfarraj, S., Georgiev, P., Schnitzler, J. P., Ghirardo, A., Kreuzer, I., Hedrich, R., & Rennenberg, H. The Venus flytrap attracts insects by the release of volatile organic compounds. J Exp Bot, 66(11), 3429. https://doi.org/10.1093/jxb/erv242
2014[ to top ]
  • Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A., Alfarraj, S., Georgiev, P., Schnitzler, J. P., Ghirardo, A., Kreuzer, I., Hedrich, R., & Rennenberg, H. The Venus flytrap attracts insects by the release of volatile organic compounds. J Exp Bot, 65(2), 755-66. https://doi.org/10.1093/jxb/ert455
  • Paszota, P., Escalante-Perez, M., Thomsen, L. R., Risor, M. W., Dembski, A., Sanglas, L., Nielsen, T. A., Karring, H., Thogersen, I. B., Hedrich, R., Enghild, J. J., Kreuzer, I., & Sanggaard, K. W. Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochim Biophys Acta, 1844(2), 374-83. https://doi.org/10.1016/j.bbapap.2013.11.009
2013[ to top ]
  • Scherzer, S., Krol, E., Kreuzer, I., Kruse, J., Karl, F., von Ruden, M., Escalante-Perez, M., Muller, T., Rennenberg, H., Al-Rasheid, K. A., Neher, E., & Hedrich, R. The Dionaea muscipula ammonium channel DmAMT1 provides NH(4)(+) uptake associated with Venus flytrap’s prey digestion. Curr Biol, 23(17), 1649-57. https://doi.org/10.1016/j.cub.2013.07.028
  • Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., Schulze, W. X., Harms, G. S., Hedrich, R., Geiger, D., & Kreuzer, I. Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A, 110(20), 8296-301. https://doi.org/10.1073/pnas.1211667110
2012[ to top ]
  • Schulze, W. X., Sanggaard, K. W., Kreuzer, I., Knudsen, A. D., Bemm, F., Thogersen, I. B., Brautigam, A., Thomsen, L. R., Schliesky, S., Dyrlund, T. F., Escalante-Perez, M., Becker, D., Schultz, J., Karring, H., Weber, A., Hojrup, P., Hedrich, R., & Enghild, J. J. The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics, 11(11), 1306-19. https://doi.org/10.1074/mcp.M112.021006
  • Blachutzik, J. O., Demir, F., Kreuzer, I., Hedrich, R., & Harms, G. S. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues. Plant Methods, 8(1), 28. https://doi.org/10.1186/1746-4811-8-28
2006[ to top ]
  • Fuchs, I., Philippar, K., & Hedrich, R. Ion channels meet auxin action. Plant Biol (Stuttg), 8(3), 353-9. https://doi.org/10.1055/s-2006-924121
2005[ to top ]
  • Fuchs, I., Stolzle, S., Ivashikina, N., & Hedrich, R. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta, 221(2), 212-21. https://doi.org/10.1007/s00425-004-1437-9
2003[ to top ]
  • Fuchs, I., Philippar, K., Ljung, K., Sandberg, G., & Hedrich, R. Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci U S A, 100(20), 11795-800. https://doi.org/10.1073/pnas.2032704100
  • Philippar, K., Buchsenschutz, K., Abshagen, M., Fuchs, I., Geiger, D., Lacombe, B., & Hedrich, R. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem, 278(19), 16973-81. https://doi.org/10.1074/jbc.M212720200
1999[ to top ]
  • Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C. S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., Becker, D., & Hedrich, R. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci U S A, 96(21), 12186-91. http://www.ncbi.nlm.nih.gov/pubmed/10518597