Department of Botany I - Plant-Physiology and Biophysics


Publications Dr. Ines Kreuzer

2023[ to top ]
  • Hedrich, R. and Kreuzer, I. (2023) Demystifying the Venus flytrap action potential, New Phytologist, 239(6), 2108–2112, available:
  • Iosip, A.-L., Scherzer, S., Bauer, S., Becker, D., Krischke, M., Al-Rasheid, K.A., Schultz, J., Kreuzer, I., and Hedrich, R. (2023) DYSCALCULIA, a Venus flytrap mutant without the ability to count action potentials, Current Biology, 33(3), 589–596.e5, available:
2022[ to top ]
  • Scherzer, S., Böhm, J., Huang, S., Iosip, A.L., Kreuzer, I., Becker, D., Heckmann, M., Al-Rasheid, K.A., Dreyer, I., and Hedrich, R. (2022) A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves, Current Biology, 32(19), 4255–4263.e5, available:
  • Scherzer, S., Huang, S., Iosip, A., Kreuzer, I., Yokawa, K., AL-Rasheid, K.A.S., Heckmann, M., and Hedrich, R. (2022) Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap, Scientific Reports, 12(1), 2851, available:
2020[ to top ]
  • Iosip, A.L., Böhm, J., Scherzer, S., Al-Rasheid, K.A.S., Dreyer, I., Schultz, J., Becker, D., Kreuzer, I., and Hedrich, R. (2020) The Venus flytrap trigger hair–specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling, PLOS Biology, 18(12), 1–29, available:
  • Palfalvi, G., Hackl, T., Terhoeven, N., Shibata, T.F., Nishiyama, T., Ankenbrand, M., Becker, D., Förster, F., Freund, M., Iosip, A., Kreuzer, I., Saul, F., Kamida, C., Fukushima, K., Shigenobu, S., Tamada, Y., Adamec, L., Hoshi, Y., Ueda, K., Winkelmann, T., Fuchs, J., Schubert, I., Schwacke, R., Al-Rasheid, K., Schultz, J., Hasebe, M., and Hedrich, R. (2020) Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory, 30(12), 2312–2320.e5, available:
2017[ to top ]
  • Scherzer, S., Shabala, L., Hedrich, B., Fromm, J., Bauer, H., Munz, E., Jakob, P., Al-Rascheid, K.A.S., Kreuzer, I., Becker, D., Eiblmeier, M., Rennenberg, H., Shabala, S., Bennett, M., Neher, E., and Hedrich, R. (2017) Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells, Proc Natl Acad Sci U S A, 114(18), 4822–4827, available:
  • Fasbender, L., Maurer, D., Kreuzwieser, J., Kreuzer, I., Schulze, W.X., Kruse, J., Becker, D., Alfarraj, S., Hedrich, R., Werner, C., and Rennenberg, H. (2017) The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration, New Phytol, 214(2), 597–606, available:
2016[ to top ]
  • Bemm, F., Becker, D., Larisch, C., Kreuzer, I., Escalante-Perez, M., Schulze, W.X., Ankenbrand, M., Van de Weyer, A.L., Krol, E., Al-Rasheid, K.A., Mithofer, A., Weber, A.P., Schultz, J., and Hedrich, R. (2016) Venus flytrap carnivorous lifestyle builds on herbivore defense strategies, Genome Res, 26(6), 812–25, available:
  • Bohm, J., Scherzer, S., Krol, E., Kreuzer, I., von Meyer, K., Lorey, C., Mueller, T.D., Shabala, L., Monte, I., Solano, R., Al-Rasheid, K.A., Rennenberg, H., Shabala, S., Neher, E., and Hedrich, R. (2016) The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake, Curr Biol, 26(3), 286–95, available:
2015[ to top ]
  • Gao, P., Loeffler, T.S., Honsel, A., Kruse, J., Krol, E., Scherzer, S., Kreuzer, I., Bemm, F., Buegger, F., Burzlaff, T., Hedrich, R., and Rennenberg, H. (2015) Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula, New Phytol, 205(3), 1320–9, available:
  • Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A., Alfarraj, S., Georgiev, P., Schnitzler, J.P., Ghirardo, A., Kreuzer, I., Hedrich, R., and Rennenberg, H. (2015) The Venus flytrap attracts insects by the release of volatile organic compounds, J Exp Bot, 66(11), 3429, available:
  • Scherzer, S., Bohm, J., Krol, E., Shabala, L., Kreuzer, I., Larisch, C., Bemm, F., Al-Rasheid, K.A., Shabala, S., Rennenberg, H., Neher, E., and Hedrich, R. (2015) Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps, Proc Natl Acad Sci U S A, 112(23), 7309–14, available:
  • Lind, C., Dreyer, I., Lopez-Sanjurjo, E.J., von Meyer, K., Ishizaki, K., Kohchi, T., Lang, D., Zhao, Y., Kreuzer, I., Al-Rasheid, K.A., Ronne, H., Reski, R., Zhu, J.K., Geiger, D., and Hedrich, R. (2015) Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure, Curr Biol, 25(7), 928–35, available:
2014[ to top ]
  • Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A., Alfarraj, S., Georgiev, P., Schnitzler, J.P., Ghirardo, A., Kreuzer, I., Hedrich, R., and Rennenberg, H. (2014) The Venus flytrap attracts insects by the release of volatile organic compounds, J Exp Bot, 65(2), 755–66, available:
  • Paszota, P., Escalante-Perez, M., Thomsen, L.R., Risor, M.W., Dembski, A., Sanglas, L., Nielsen, T.A., Karring, H., Thogersen, I.B., Hedrich, R., Enghild, J.J., Kreuzer, I., and Sanggaard, K.W. (2014) Secreted major Venus flytrap chitinase enables digestion of Arthropod prey, Biochim Biophys Acta, 1844(2), 374–83, available:
2013[ to top ]
  • Scherzer, S., Krol, E., Kreuzer, I., Kruse, J., Karl, F., von Ruden, M., Escalante-Perez, M., Muller, T., Rennenberg, H., Al-Rasheid, K.A., Neher, E., and Hedrich, R. (2013) The Dionaea muscipula ammonium channel DmAMT1 provides NH(4)(+) uptake associated with Venus flytrap’s prey digestion, Curr Biol, 23(17), 1649–57, available:
  • Demir, F., Horntrich, C., Blachutzik, J.O., Scherzer, S., Reinders, Y., Kierszniowska, S., Schulze, W.X., Harms, G.S., Hedrich, R., Geiger, D., and Kreuzer, I. (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3, Proc Natl Acad Sci U S A, 110(20), 8296–301, available:
2012[ to top ]
  • Blachutzik, J.O., Demir, F., Kreuzer, I., Hedrich, R., and Harms, G.S. (2012) Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues, Plant Methods, 8(1), 28, available:
  • Schulze, W.X., Sanggaard, K.W., Kreuzer, I., Knudsen, A.D., Bemm, F., Thogersen, I.B., Brautigam, A., Thomsen, L.R., Schliesky, S., Dyrlund, T.F., Escalante-Perez, M., Becker, D., Schultz, J., Karring, H., Weber, A., Hojrup, P., Hedrich, R., and Enghild, J.J. (2012) The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms, Mol Cell Proteomics, 11(11), 1306–19, available:
2006[ to top ]
  • Fuchs, I., Philippar, K., and Hedrich, R. (2006) Ion channels meet auxin action, Plant Biol (Stuttg), 8(3), 353–9, available:
2005[ to top ]
  • Fuchs, I., Stolzle, S., Ivashikina, N., and Hedrich, R. (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress, Planta, 221(2), 212–21, available:
2003[ to top ]
  • Fuchs, I., Philippar, K., Ljung, K., Sandberg, G., and Hedrich, R. (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile, Proc Natl Acad Sci U S A, 100(20), 11795–800, available:
  • Philippar, K., Buchsenschutz, K., Abshagen, M., Fuchs, I., Geiger, D., Lacombe, B., and Hedrich, R. (2003) The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays, J Biol Chem, 278(19), 16973–81, available:
1999[ to top ]
  • Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C.S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., Becker, D., and Hedrich, R. (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism, Proc Natl Acad Sci U S A, 96(21), 12186–91, available: