Center for Computational and Theoretical Biology

Metapopulations and Metacommunities in a Changing World

Summary

Species do not generally occur in continuous space and time, but normally on more or less descrete patches interspaced by a matrix of various degree of hostility. These creates metapopulations, namely a group of populations connected by long-distance dispersal. Seminal theoretical work in metapopulations was pioneered by Levins and further developement was systematically summarized by Ilka Hanski. However, species also do not occurr alone and the same rationale can be applied one ecological level higher - the metacommunity, a field explored and summarized by Mathew Leibold and Jonathan Chase. Various theoretical concepts come into play on metapopulations and metacommunities, such as source-sink dynamics (similar to mainland-island system), multiple equilibria, fragmentation effects, and patch extinction and re-colonization. Studies may have explicit local population dynamics, but metapopulation and metacommunity fields are largely represented by demographically-implicit models that concentrate on the patch colonization and extinction dynamics.

In our working group, we explore how metapopulation and metacommunity dynamics emerge from multi-species, niche-based, spatially-explicit models which are based on individuals and populations.

Details

This topic is currently investigated in three subprojects:

1) Extinction debt in fragmented landscapes: spatio-temporal metacommunity dynamics under environmental change. Performed by PhD student Ludmilla Figueiredo.

2) Eco-evolutionary dynamics on islands. Performed by PhD student Ludwig Leidinger.

3) Invasion dynamics on islands. Performed by MSc student Daniel Vedder.

4) Current and future distribution of aquatic macrophytes in Bavarian lakes (a BLIZ/Bayklif project). Performed by PhD student Anne Lewerentz

Publications

2020[ to top ]
  • Integrating the underlying structure of stochasticity into community ecology. Shoemaker, Lauren G.; Sullivan, Lauren L.; Donohue, Ian; Cabral, Juliano S.; Williams, Ryan J.; Mayfield, Margaret M.; Chase, Jonathan M.; Chu, Chengjin; Harpole, W. Stanley; Huth, Andreas; HilleRisLambers, Janneke; James, Aubrie R.M.; Kraft, Nathan J.B.; May, Felix; Muthukrishnan, Ranjan; Satterlee, Sean; Taubert, Franziska; Wang, Xugao; Wiegand, Thorsten; Yang, Qiang; Abbott, Karen C. In Ecology, 101, bl e02922. 2020.
2019[ to top ]
  • Understanding extinction debts: spatio-temporal scales, mechanisms and a roadmap for future research. Figueiredo, Ludmilla; Krauß, Jochen; Steffan-Dewenter, Ingolf; Sarmento Cabral, Juliano. In Ecography, 42, bll 1973–1990. 2019.
  • The latitudinal diversity gradient - novel understanding through mechanistic eco-evolutionary models. Pontarp, Mikael; Bunnefeld, Lynsey; Cabral, Juliano Sarmento; Etienne, Rampal S.; Fritz, Susanne A.; Gillespie, Rosemary; Graham, Catherine H.; Hagen, Oskar; Hartig, Florian; Huang, Shan; Jansson, Roland; Maliet, Odile; Münkemüller, Tamara; Pellissier, Loïc; Rangel, Thiago F.; Storch, David; Wiegand, Thorsten; Hurlbert, Allen H. In Trends in Ecology & Evolution, 34, bll 211–223. 2019.
  • The dimensionality of stability depends on disturbance type. Radchuk, Viktoriia; De Laender, Frederik; Sarmento Cabral, Juliano; Boulangeat, Isabelle; Crawford, Michael; Bohn, Friedrich; De Raedt, Jonathan; Scherer, Cedric; Svenning, Jens-Christian; Thonicke, Kirsten; Schurr, Frank; Grimm, Volker; Kramer-Schadt, Stephanie. In Ecology Letters, 22, bll 674–684. 2019.
  • Interactions between ecological, evolutionary, and environmental processes unveil complex dynamics of insular plant diversity. Cabral, J.S.; Wiegand, K.; Kreft, H. In Journal of Biogeography, 46, bll 1582–1597. 2019.
  • Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco-evolutionary model for plants. Cabral, J.S.; Whittaker, R.J.; Wiegand, K.; Kreft, H. In Journal of Biogeography, 46, bll 1569–1581. 2019.
2017[ to top ]
  • Interactions between ecological, evolutionary, and environmental processes unveil complex dynamics of island biodiversity. Cabral, J.S.; Wiegand, K.; Kreft, H. In bioRxiv, (099978). 2017.
2016[ to top ]
  • Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Petter, G.; Wagner, K.; Wanek, W.; Sánchez Delgado, E.J.; Zotz, G.; Cabral, J.S.; Kreft, H. In Functional Ecology, 30, bll 188–198. 2016.
  • Delineating probabilistic species pools in ecology and biogeography. Karger, D.N.; Cord, A.; Kessler, M.; Kreft, H.; Kühn, I.; Pompe, S.; Sandel, B.; Sarmento Cabral, J.; Smith, A.; Svenning, J.-C.; Tuomisto, H.; Weigelt, P.; Wesche, K. In Global Ecology and Biogeography, 25, bll 489–501. 2016.
  • Benchmarking novel approaches for modelling species range dynamics. Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S.; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E. In Global Change Biology, 22(8), bll 2651–2664. 2016.
2015[ to top ]
  • Branchfall as a demographic filter for epiphyte communities: Lessons from a forest floor-based sampling. Cabral, J.S.; Petter, G.; Mendieta-Leiva, G.; Wagner, K.; Zotz, G.; Kreft, H. In PloS one, 10, bl e0128019. 2015.
2012[ to top ]
  • Linking ecological niche, community ecology and biogeography: insights from a mechanistic niche model. Cabral, Juliano Sarmento; Kreft, Holger. In Journal of Biogeography, 39(12), bll 2212–2224. 2012.
  • How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. Schurr, Frank M.; Pagel, Jörn; Cabral, Juliano Sarmento; Groeneveld, Jürgen; Bykova, Olga; O’Hara, Robert B.; Hartig, Florian; Kissling, W. Daniel; Linder, H. Peter; Midgley, Guy F.; Schröder, Boris; Singer, Alexander; Zimmermann, Niklaus E. In Journal of Biogeography, 39(12), bll 2146–2162. Blackwell Publishing Ltd, 2012.
2011[ to top ]
  • Effects of Harvesting Flowers from Shrubs on the Persistence and Abundance of Wild Shrub Populations at Multiple Spatial Extents. Cabral, Juliano Sarmento; Bond, William J.; Midgley, Guy F.; Rebelo, Anthony G.; Thuiller, Wilfried; Schurr, Frank M. In Conservation Biology, 25(1), bll 73–84. Blackwell Publishing Inc, 2011.
2010[ to top ]
  • Estimating demographic models for the range dynamics of plant species. Cabral, Juliano S.; Schurr, Frank M. In Global Ecology and Biogeography, 19(1), bll 85–97. Blackwell Publishing Ltd, 2010.