Center for Computational and Theoretical Biology


Species do not generally occur in continuous space and time, but normally on more or less descrete patches interspaced by a matrix of various degree of hostility. These creates metapopulations, namely a group of populations connected by long-distance dispersal. Seminal theoretical work in metapopulations was pioneered by Levins and further developement was systematically summarized by Ilka Hanski. However, species also do not occurr alone and the same rationale can be applied one ecological level higher - the metacommunity, a field explored and summarized by Mathew Leibold and Jonathan Chase. Various theoretical concepts come into play on metapopulations and metacommunities, such as source-sink dynamics (similar to mainland-island system), multiple equilibria, fragmentation effects, and patch extinction and re-colonization. Studies may have explicit local population dynamics, but metapopulation and metacommunity fields are largely represented by demographically-implicit models that concentrate on the patch colonization and extinction dynamics.

In our working group, we explore how metapopulation and metacommunity dynamics emerge from multi-species, niche-based, spatially-explicit models which are based on individuals and populations.


This topic is currently investigated in three subprojects:

1) Extinction debt in fragmented landscapes: spatio-temporal metacommunity dynamics under environmental change. Performed by PhD student Ludmilla Figueiredo.

2) Migration behavior and population dynamics of Saiga Antilopes in Central Asia. Performed by bachelor student Daniel Vedder.

3) Eco-evolutionary dynamics on islands. Performed by PhD student Ludwig Leidinger.


[ submitted ] [ accepted ] [ 2017 ] [ 2016 ] [ 2015 ] [ 2012 ] [ 2011 ] [ 2010 ]

submitted[ nach oben ]

  • The dimensionality of stability depends on disturbance type.Radchuk, Viktoriia; De Laender, Frederik; Sarmento Cabral, Juliano; Boulangeat, Isabelle; Crawford, Michael; Bohn, Friedrich; De Raedt, Jonathan; Scherer, Cedric; Svenning, Jens-Christian; Thonicke, Kirsten; Schurr, Frank; Grimm, Volker; Kramer-Schadt, Stephanie (submitted).
  • Mechanisms of extinction debt across levels of ecological organization.Figueiredo, Ludmilla; Krauß, Jochen; Steffan-Dewenter, Ingolf; Sarmento Cabral, Juliano (submitted).
  • Integrating stochasticity into community ecology.Shoemaker, Lauren G.; Sullivan, Lauren L.; Donohue, Ian; Cabral, Juliano S.; Williams, Ryan J.; Mayfield, Margaret M.; Chase, Jonathan M.; Chu, Chengjin; Harpole, W. Stanley; Huth, Andreas; HilleRisLambers, Janneke; James, Aubrie R.M.; Kraft, Nathan J.B.; May, Felix; Muthukrishnan, Ranjan; Satterlee, Sean; Taubert, Franziska; Wang, Xugao; Wiegand, Thorsten; Yang, Qiang; Abbott, Karen C. (submitted).

accepted[ nach oben ]

  • The latitudinal diversity gradient - novel understanding through mechanistic eco-evolutionary models.Pontarp, Mikael; Bunnefeld, Lynsey; Cabral, Juliano Sarmento; Etienne, Rampal S.; Fritz, Susanne A.; Gillespie, Rosemary; Graham, Catherine H.; Hagen, Oskar; Hartig, Florian; Huang, Shan; Jansson, Roland; Maliet, Odile; Münkemüller, Tamara; Pellissier, Loïc; Rangel, Thiago F.; Storch, David; Wiegand, Thorsten; Hurlbert, Allen H. in Trends in Ecology & Evolution (accepted).

2017[ nach oben ]

  • Interactions between ecological, evolutionary, and environmental processes unveil complex dynamics of island biodiversity.Cabral, J.S.; Wiegand, K.; Kreft, H. in bioRxiv (2017). (099978)

2016[ nach oben ]

  • Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals.Petter, G.; Wagner, K.; Wanek, W.; Sánchez Delgado, E.J.; Zotz, G.; Cabral, J.S.; Kreft, H. in Functional Ecology (2016). 30 188-198.
  • Delineating probabilistic species pools in ecology and biogeography.Karger, D.N.; Cord, A.; Kessler, M.; Kreft, H.; Kühn, I.; Pompe, S.; Sandel, B.; Sarmento Cabral, J.; Smith, A.; Svenning, J.-C.; Tuomisto, H.; Weigelt, P.; Wesche, K. in Global Ecology and Biogeography (2016). 25 489-501.
  • Benchmarking novel approaches for modelling species range dynamics.Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S.; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E. in Global Change Biology (2016). 22(8) 2651--2664.

2015[ nach oben ]

  • Branchfall as a demographic filter for epiphyte communities: Lessons from a forest floor-based sampling.Cabral, J.S.; Petter, G.; Mendieta-Leiva, G.; Wagner, K.; Zotz, G.; Kreft, H. in PloS one (2015). 10 e0128019.

2012[ nach oben ]

  • Linking ecological niche, community ecology and biogeography: insights from a mechanistic niche model.Cabral, Juliano Sarmento; Kreft, Holger in Journal of Biogeography (2012). 39(12) 2212--2224.
  • How to understand species’ niches and range dynamics: a demographic research agenda for biogeography.Schurr, Frank M.; Pagel, Jörn; Cabral, Juliano Sarmento; Groeneveld, Jürgen; Bykova, Olga; O’Hara, Robert B.; Hartig, Florian; Kissling, W. Daniel; Linder, H. Peter; Midgley, Guy F.; Schröder, Boris; Singer, Alexander; Zimmermann, Niklaus E. in Journal of Biogeography (2012). 39(12) 2146--2162.

2011[ nach oben ]

  • Effects of Harvesting Flowers from Shrubs on the Persistence and Abundance of Wild Shrub Populations at Multiple Spatial Extents.Cabral, Juliano Sarmento; Bond, William J.; Midgley, Guy F.; Rebelo, Anthony G.; Thuiller, Wilfried; Schurr, Frank M. in Conservation Biology (2011). 25(1) 73--84.

2010[ nach oben ]

  • Estimating demographic models for the range dynamics of plant species.Cabral, Juliano S.; Schurr, Frank M. in Global Ecology and Biogeography (2010). 19(1) 85--97.

Center for Computational and Theoretical Biology
Gebäude 32
Campus Hubland Nord
97074 Würzburg

Suche Ansprechpartner

Hubland Nord, Geb. 32
Hubland Nord, Geb. 32