Lehrstuhl für Zell- und Entwicklungsbiologie

Brooke Morriswood

Brooke Morriswood


Brooke Morriswood

... is a molecular cell biologist with interests in the cytoskeleton and membrane trafficking. He graduated from Cambridge University (2002) with a degree in biochemistry, and completed doctoral studies under the supervision of John Kendrick-Jones at the Laboratory of Molecular Biology, Cambridge (2006). He carried out postdoctoral studies in the laboratory of Graham Warren at Yale University (2007) and the Max F. Perutz Laboratories in Vienna (2008-2014). Brooke joined the Biocenter in April 2015.

He is the writer of the Total Internal Reflection science blog (https://totalinternalreflectionblog.com). Twitter: @TIRscienceblog


2006: PhD, Laboratory of Molecular Biology, Cambridge, UK

2007 Postdoc: Yale University, USA

2008-2014: Postdoc, Max F. Perutz Laboratories, Vienna, Austria

2015-present: Junior group leader, Cell and Developmental Biology, University of Würzburg



Tel ++49 93131 83556




Research synopsis

The cytoskeleton of Trypanosoma brucei is essential for its viability, and contributes to a number of cellular processes including membrane trafficking and motility.

Several discrete cytoskeletal structures are clustered around the neck of the flagellar pocket, an invaginated subdomain of the plasma membrane which is the sole site of endo- and exocytosis in T. brucei. One of these structures is a multiprotein complex defined by the repeat-motif protein TbMORN1. The morphology, composition, and function of this complex is the primary focus of Brooke's research. Experimental approaches involve a combination of light microscopy, fluorescence microscopy and electron microscopy, together with biochemical and functional assays. TbMORN1 was the focus of a highly-successful screen using proximity-dependent biotinylation (BioID), and this technique remains a cornerstone of the lab's work.

The second main theme in the laboratory is focused around the actomyosin system in trypanosomes, and specifically their myosin motor proteins. T. brucei exhibits a dramatically reduced actomyosin complement relative to metazoan cells, making it an ideal model system for some fundamental questions in eukaryotic cell biology.

Interested? We are always on the lookout for talented Bachelor's and Master's students - e-mail Brooke (brooke.morriswood@uni-wuerzburg.de) to arrange a chat. There are currently no funded positions available for PhD students or postdocs, but if you interested in joining the team then get in touch to discuss options...

Recent research publications

Opinion pieces

Morriswood B, Hoeller O. Hidden value. (2019) Elife. Aug 20;8.:e50543.

Morriswood B, Hoeller O. The rat race. (2019) EMBO Rep. Jul;20(7):e48528. 

Morriswood B, Hoeller O. A Bosman ruling for science. (2018) EMBO Rep. Nov;19(11):e47071. 

Morriswood B, Hoeller O. Resurrection science. (2018) EMBO Rep. Aug;19(8): e46577. 

Morriswood B, Hoeller O. Nobody at the top. (2018) EMBO Rep. Jun;19(6):e46329. 


Research - preprints, journal articles


Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. (2020) biorXiv, peer review via Review Commons.

A modification to the life cycle of the parasite Trypanosoma brucei. (2019) biorXiv.

Journal articles (research articles and reviews):

Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. (2020) Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats.  PLoS ONE

Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. (2017) Parasitology. Feb 7:1-14.

Cicova Z, Dejung M, Skalicky T, Eisenhuth N, Hanselmann S, Morriswood B, Figueiredo LM, Butter F, Janzen CJ. (2016) Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation. Sci Rep. 6:35826.

Vidilaseris K, Lesigang J, Morriswood B, Dong G. Assembly mechanism of Trypanosoma brucei BILBO1 at the flagellar pocket collar. (2015) Commun Integr Biol.8(1):e992739.  

Morriswood B. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. (2015) Cells. 4(4):726-47.

Morriswood B, Schmidt K. A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei. (2015) Eukaryot Cell. 14(11):1081-93.

Vidilaseris K, Shimanovskaya E, Esson HJ, Morriswood B, Dong G. Assembly mechanism of Trypanosoma brucei BILBO1, a multidomain cytoskeletal protein. (2014) J Biol Chem. 289(34):23870-81.

Vidilaseris K, Morriswood B, Kontaxis G, Dong G. Structure of the TbBILBO1 protein N-terminal domain from Trypanosoma brucei reveals an essential requirement for a conserved surface patch. (2014) J Biol Chem. 289(6):3724-35.  

Morriswood B, Warren G. Cell biology. Stalemate in the Golgi battle. (2013) Science. 341(6153):1465-6.  

Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, Anrather D, Kostan J, Djinovic-Carugo K, Roux KJ, Warren G. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. (2013) Eukaryot Cell. 12(2):356-67.  

Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. (2012) Eukaryot Cell. 11(6):761-72.

Morriswood B, He CY, Sealey-Cardona M, Yelinek J, Pypaert M, Warren G. The bilobe structure of Trypanosoma brucei contains a MORN-repeat protein. (2009) Mol Biochem Parasitol 167(2):95-103.